Selective adsorption of lead (II) ions by a manganese dioxides-loaded adsorption resin

Ying Xionga,*, Xuemei Lub, Huchun Taoa

aShenzhen Key Laboratory for Metal Pollution Control and Reutilization, School of Environment and Energy, Shenzhen Graduate School, Peking University, Xili University City, Shenzhen 518055, P.R. China, Tel./Fax: +86 755 26032114; email: xiongying@pkusz.edu.cn (Y. Xiong), Tel./Fax: +86 755 26032007; email: taohc@pkusz.edu.cn (H. Tao)

bChina Aerospace Construction Group Limited Company, Haidian District, Beijing 100071, P.R. China, Tel./Fax: +86 10 62754290; email: amanda_vv@163.com

Received 6 February 2014; Accepted 17 October 2014

ABSTRACT

A new adsorbent SD300-M was successfully synthesized by coating the adsorption resin SD300 with manganese oxide via KMnO\textsubscript{4} modification. The results of X-ray photoelectron spectrometer and nitrogen adsorption measurement revealed that the manganese oxide exists as MnO\textsubscript{2} on the surface and inside the channel of the SD300 resin. The SD300-M resin exhibited higher adsorption capacity to Pb2+ with the maximum adsorption capacity as high as 141 mg/g, comparing with original SD300 resin and the other manganese oxide-modified adsorbents, such as cellulose or carbon nanotubes. The increased adsorption of Pb2+ on the SD300-M resin arose mainly from the formation of inner-sphere complexes with MnO\textsubscript{2}. In the presence of Ca2+ and Mg2+, the SD300-M resin also has excellent adsorption selectivity for Pb2+ relative to that of the D301-M and HMO-001 resins, which arises from electrostatic interaction and surface complexation acting together. All the results indicate that the SD300-M resin is an efficient adsorbent to remove Pb2+ from aqueous solution.

Keywords: Selective adsorption; Manganese dioxides; Heavy metals

*Corresponding author.