Can rapid pressure decrease induced by supercavitation efficiently eradicate *Legionella pneumophila* bacteria?

Andrej Šarc\(^a\), Martina Oder\(^b\), Matevž Dular\(^a\,*\)

\(^a\)Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia, Tel. +386 31 419 005; email: andrejsarc@gmail.com (A. Šarc), Tel. +386 1 4771 453; email: matevz.dular@fs.uni-lj.si (M. Dular)

\(^b\)Biomedical Research Group, Faculty of Health sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia, Tel. +386 1 3001 182; email: martina.oder@zf.uni-lj.si

Received 25 March 2014; Accepted 14 October 2014

ABSTRACT

The presence of *Legionella pneumophila* bacteria in engineered water systems can pose a significant health risk. Current prevention and outbreak treatments are cost and environmentally ineffective. Moreover they do not prevent rapid bacteria recolonization. Although cavitation was already suggested as a possible water treatment technique a systematic study has not yet been performed. In the present experimental campaign we set out to evaluate the efficiency of removal of *L. pneumophila* by three types of cavitation—the most commonly used acoustic cavitation, the aggressive developed hydrodynamic cavitation, and the supercavitation. We show that it is probably not the pressure peaks or the high local temperatures that cause the eradication of the bacteria, but the rapid pressure decrease which was initiated in supercavitating flow regime. Results of the study show promising ground for further optimization of a methodology for *L. pneumophila* removal by cavitation.

Keywords: Cavitation; *Legionella pneumophila* bacteria; Supercavitation; Developed hydrodynamic cavitation; Ultrasonic cavitation

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.