Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon

Kumar Anupamaa,*, Suman Duttab, Chiranjib Bhattacharjeec, Siddhartha Dattac

aPhysical Chemistry, Pulping and Bleaching Division, Central Pulp and Paper Research Institute, Himmat Nagar, Saharanpur 247001, Uttarpradesh, India, Tel. +91 132 2714054; Fax:+91 132 2714052; email: kumaranupam@live.com
bDepartment of Chemical Engineering, Indian School of Mines, Dhanbad 826004, Jharkhand, India, Tel. +91 947192214; email: ss.dutta@hotmail.com
cDepartment of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal, India, Tel. +91 9836402118; email: cbhattacharyya@chemical.jdvu.ac.in (C. Bhattacharjee), Tel. +91 9830108902; email: sdatta_che@rediffmail.com (S. Datta)

Received 3 March 2014; Accepted 7 November 2014

\textbf{ABSTRACT}

A three-layered feed-forward artificial neural network (ANN) model has been designed to predict the adsorption efficiency and adsorption capacity for the adsorptive removal of chromium (VI) from synthetic wastewater. The adsorbent dose, wastewater pH, initial pollutant concentration and contact time were used to develop the network. The data used to train and test the model were obtained from several batch experiments. Various algorithms and transfer functions for hidden layer were tested to find the most reliable network. Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm gave the most satisfactory results for adsorption efficiency. Resilient and BFGS quasi-Newton backpropagation were the most suitable algorithm for adsorption capacity. The best combination of training algorithm and transfer function for adsorption efficiency was found to be trainrp and poslin, while poslin produced simulated results within 10% deviation for adsorption capacity. Eight to eleven neurons were found to be optimum using trial-and-error method. The ANN predicted and experimentally measured values were compared to test the accuracy of the model.

\textit{Keywords:} Wastewater treatment; Adsorbent; Adsorption; Artificial intelligence; Automation

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.