Biosorption of nickel (II) and copper (II) ions from aqueous solution using novel biomass derived from Nannorrhops ritchiana (Mazri Palm)

Sefath Ullah Khana, Farman Ullah Khana,\#, Ihsan Ullah Khanb, Nawshad Muhammadc,\#, Syed Badshahd, Adnan Khane, Asim Ullaha, Amir Sada Khana,f, Hazrat Bilala, Asma Nasrullaha

aDepartment of Chemistry, University of Science and Technology, Bannu 28100, Pakistan, Tel. +923339730250; email: safe5754@gmail.com (S.U. Khan), Tel. +92334840892; email: farmandphil@yahoo.com (F.U. Khan), Tel. +923009392396; email: dawarrasim@yahoo.com (A. Ullah), Tel. +00601116473142; email: aamirsada_khan@yahoo.com (A.S. Khan), Tel. +923339731300; email: bilalmphil2013@gmail.com (H. Bilal), Tel. +923349720250; email: Nasrullahadvent_chemis@yahoo.com (A. Nasrullah)

bDepartment of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), 31750 Tronoh, Perak, Malaysia, Tel. +0060163091782; email: ihsan_sagar@yahoo.com

cInterdisciplinary Research Center in Biomedical Materials COMSATS, Institute of Information Technology, Lahore, Pakistan, Tel. +923339223834; email: nawshadchemist@yahoo.com

dDepartment of Chemistry, Gomal University D.I. Khan, D.I. Khan, Pakistan

eInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, Tel. +923009890269; email: adnanics@yahoo.com

fPETRONAS Ionic Liquid Centre, Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 31750 Tronoh, Perak, Malaysia

Received 6 February 2014; Accepted 11 November 2014

\textbf{ABSTRACT}

In the present research work, Nannorrhops ritchiana (Mazri Palm) was used as an effective biosorbent for removal of Cu2+ and Ni2+ ions from aqueous solution. Nannorrhops ritchiana (Mazri Palm), a dead biomass powder, was used as a low-cost adsorbent without any chemical treatment. In order to estimate the equilibrium parameters, the equilibrium adsorption data were analyzed using Freundlich, Langmuir, and Temkin isotherms. Freundlich isotherms indicated that the sorption capacities on the biomass surfaces increased with increasing initial concentrations of both metals. The adsorption isotherms were correlated with a comparison of linear and non-linear regression analysis. The squares of the errors (SSE) and chi-square test (χ^2) along with the coefficient of determination (R^2) were used to determine the best fit isotherm. Langmuir type I was found the best fitting isotherm for adsorption of both Cu2+ and Ni2+ ions as compared to the other three Langmuir linear isotherms on the basis of the values for R^2 and other error functions like SSE and χ^2 obtained from Langmuir-type I linear equation. The present study revealed that Nannorrhops ritchiana proved to be an effective, inexpensive, alternative, and environmentally friendly biosorbent for the removal of Cu2+ and Ni2+ ions from aqueous solution.

\textbf{Keywords:} Nannorrhops ritchiana; Biosorption; Cu and Ni; Adsorption isotherm

#Corresponding authors.