Enhanced photocatalytic degradation of phenol by immobilized TiO$_2$/dye-loaded chitosan

Sumiyyah Sabara*, Mohd Asri Nawib, Ali H. Jawadc, Raphaël Schneiderd

aChemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia, Tel. +604 6532284; email: sumiyyahs@usm.my

bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia, Tel. +6019 4100356; email: masri@usm.my

cFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, Tel. +603 55211721; emails: ahjm72@gmail.com/ali288@salam.uitm.edu.my (A.H. Jawad)

dLaboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, F-54000 Nancy, France, Tel. +33-3-7274-3790; email: raphael.schneider@univ-lorraine.fr

Received 5 January 2019; Accepted 30 June 2019

ABSTRACT

In this study, an immobilized TiO$_2$/dye-loaded chitosan was designed in a layer-by-layer arrangement for the enhanced photocatalytic degradation of phenol under a 45-W compact household fluorescent light irradiation. The immobilized photocatalyst was supported on glass plates and consists of a porous top layer of TiO$_2$ and sub-layer of chitosan (CS) with chemisorbed Reactive Red 4 (RR4) dye (TiO$_2$/RR4-CS/glass). Results from the optical studies demonstrated that the absorption threshold of the immobilized photocatalyst was shifted to the visible light region with lower recombination of electron–hole pairs. The TiO$_2$/RR4-CS/glass exhibits improved photocatalytic degradation and mineralization of phenol as compared with the TiO$_2$/glass and TiO$_2$/CS/glass photocatalysts, with a degradation rate of 0.030 min$^{-1}$ and total mineralization of 76.7%. The immobilized photocatalyst also exhibited excellent photocatalytic stability and could be reused for up to five cycles of phenol treatment. The enhanced photocatalytic performance of the TiO$_2$/RR4-CS/glass can be ascribed to the synergistic photocatalytic and sensitization effects that run concurrently under light irradiation.

Keywords: Chitosan; Dye; Immobilization; Photocatalysis; Sensitization; Titanium dioxide

1. **Introduction**

Phenol is the most common pollutant emitted into the surface water. It is introduced into water from industries such as pesticides, coal conversion, petroleum, petrochemicals, paint, polymer resin, pharmaceuticals, and also from domestic wastewater. It is a high priority pollutant due to its extremely high endocrine-disrupting potency and genotoxicity even at low concentration [1]. Phenol is water-soluble, stable, and a bio-refractory pollutant which makes its treatment in wastewater by the traditional methods ineffective [2]. Rapid industrialization in Malaysia for the past 20 years has contributed to the increase of phenols in water bodies. In this case, the Department of Environment (DOE) has set a national guideline for phenol content which specifies that its concentration in the wastewater should not exceed 0.001 mg L$^{-1}$ [3]. Therefore, the treatment of phenol-containing wastewater using suitable and efficient method is of high importance.

Photocatalysis is one of the most promising advanced oxidation processes and is a green technology that can be applied to wastewater treatment and water purification.
Titanium dioxide (TiO₂) is considered to be a benchmark semiconductor for photocatalysis not only due to its high activity but also because it is chemically stable, cheap, easy to produce, and environmentally friendly [4]. Under UV light irradiation, TiO₂ produces reactive oxygen species that are able to fully mineralize organic pollutants such as dyes, drugs, pesticides, and phenolic compounds [2,5–7]. However, the high recombination rate of electron–hole pairs and the wide bandgap of TiO₂ (~3.2 eV) restricts its large-scale applications especially under solar and visible irradiation. Hence, it is necessary to modify TiO₂ in order to improve its photocatalytic performances and applicability.

Various methods have been developed to improve TiO₂ photocatalytic activity, including doping with metal ions [7,8], doping with non-metal elements [8,9], building heterojunction with small bandgap semiconductors [10,11], combination with adsorbent [5,12], and dye sensitization [2,6,13–17]. Dye sensitization seems to be an interesting research area since it is the easiest and the most effective technique to improve the visible light sensitivity of TiO₂. Dye absorbs visible light and transfer electrons to the TiO₂ conduction band, thus improving the separation efficiency of photoinjected electron–hole pairs and the photocatalytic activity. In fact, dye-sensitized TiO₂ has received much attention in photovoltaic applications, such as dye-sensitized solar cells [18,19] and photolysis of water to generate hydrogen [20,21]. Various methods have been developed for the preparation of dye-sensitized TiO₂ photocatalytic system. For example, Boyer et al. [13] used cis-dichlorobis(2,2′-bipyridyl-4,4′-dicedarboxylic acid) ruthenium(II) to sensitize TiO₂ toscorpun fibers for the degradation of phenazopyridine under UV and visible irradiation. Vinu et al. [14] used xanthene-fluorone dyes, Eosin Y (EY), and fluorescein (FL) dyes, to sensitize nano-TiO₂ for the degradation of phenolic compounds under visible light. Finally, Hamdi et al. [15] used chitosan (CS) as a template for the preparation of CS-phthalocyanine-TiO₂ composites able to photodegrade aniline. However, the existing practice of the dye-sensitized TiO₂ photocatalytic system has few drawbacks that need to be overcome. First, transition metal or organic metal complexes used as sensitizers are toxic and generally very expensive [16,17]. Second, the dye may leach out into the treated water or degraded, producing side products which are need to be treated [6,14,16]. In addition, the regeneration, recovery, and reusability of the dye-sensitized TiO₂ in slurry mode remains a major problem for large-scale applications [16,17].

Our group has been working with immobilized photocatalysts for the past few years, particularly on TiO₂/CS layer-by-layer arrangement [5,22,23]. It was observed that upon light irradiation, the ENR₀ in the TiO₂ formulation degraded and formed macro-pores within the surface of TiO₂ layer [22]. The macro-pores increased the surface area of the photocatalyst and improved the diffusion of pollutants and light penetration to the CS sub-layer, thereby enhancing the photocatalytic performance and reusability of the immobilized photocatalyst [22]. Furthermore, the immobilized TiO₂/CS photocatalyst has also shown improvement in the photocatalytic degradation of Reactive Red 4 (RR4) dye due to the synergistic effects of photocatalysis, adsorption, and self-sensitization processes [5]. The chemisorbed RR4 dye at the CS sub-layer has the capability of participating in the electron transfer process to improve the photocatalytic decolorization of RR4 dye in the bulk solution.

The main objective of this work is to explore the potential of immobilized TiO₂/CS loaded with RR4 dye in a layer-by-layer arrangement (TiO₂/RR4-CS/glass) for the photocatalytic degradation and mineralization of phenol. Phenol was chosen as a model pollutant since it does not have adsorption ability towards the TiO₂/CS photocatalyst [22]. Therefore, any enhancement in the photocatalytic activity would prove the sensitization effect by the chemisorbed dye. The RR4 dye is a highly stable tetrasulfonated monoazo dye that is commonly used in textiles and dyestuff industries. It is metal-free, cheap, and commercially available. Considering that the industrial textile wastewater consists large amount of dyes, these dyes can be recycled and use as an effective dye sensitizer in wastewater treatment, solar cells or hydrogen generation.

2. Experimental section

2.1. Materials

Chitosan (CS) flakes (68.2% degree of deacetylation with a molecular weight of 322 g mol⁻¹, Reactive Red 4 (RR4) dye with 50% dye content (color index number: 18:105, chemical formula: C₃₂H₂₃ClN₈Na₄O₁₄S₄, molecular weight: 995.23 g mol⁻¹, λ_max: 517 nm), terephthalic acid (TA), 98%), and TiO₂ (99% anatase) were purchased from Sigma-Aldrich (USA). Other chemicals used were epoxidized natural rubber (ENRₙ₋₀) (Kumpulan Guthrie Berhad), ethylenediaminetetraacetic acid (EDTA) di-sodium salt (Ajax Chemicals, Australia, 99%), p-benzoquinone (BQ) (BDH Chemicals Ltd., UK, 98%), phenol (Scharlau, Spain, 99.5%), and phenol formaldehyde (PF) powder resin (Borden Chemical (M) Sdn. Bhd., Malaysia, 99%). All chemical solutions were prepared using ultra-pure water (resistivity = 18.2 MΩ cm).

2.2. Preparation of the immobilized photocatalysts

The preparation of the immobilized photocatalysts was previously described in detail elsewhere [5,23]. It involves three steps: (1) casting of CS solution, (2) adsorption of RR4 dye, and (3) dip-coating of TiO₂ formulation. The CS solution was prepared by grounding 6.0 g of CS flakes and 400 mL of 5% acetic acid in a ball mill grinder for 30 h. After the grounding process, the produced CS solution was casted evenly on the surface of glass plates (dimensions 4.7 × 6.5 cm) before air-dried at room temperature (27°C). Glass plates containing 0.65 ± 0.08 mg cm⁻² of CS (with thickness of 6.15 ± 0.13 μm) were subjected to an adsorption process in RR4 dye solution. The concentrations of RR4 dye were monitored at a wavelength of 517 nm using a HACH DR/2000 (USA) direct read spectrophotometer. The adsorption study of RR4 dye by the CS/glass had been reported in detail by Nawi et al. [23]. The adsorption capacity, qₑ, of fully saturated RR4 dye on the CS sub-layer was calculated to be 172 mg g⁻¹. The dye-loaded CS (RR4-CS/glass) was washed with ultra-pure water to remove any non-adsorbed dye and then dried at room temperature before being coated with the TiO₂ formulation. The TiO₂ formulation was prepared by dissolving 5.0 g of ENRₙ₋₀ solution (~11.3% w/v of ENRₙ₋₀ in toluene), 0.15 g
of PF and 12.0 g of TiO₂ powder in 60 mL of acetone. The formulation was sonicated for at least 5 h before immobilizing the TiO₂ on the glass plates by a simple dip-coating technique. An optimum TiO₂ loading of 0.98 ± 0.08 mg cm⁻¹ (thickness 14.5 ± 0.4 μm) [24] was used throughout this study. The immobilized photocatalysts were finally photo-etched under a 45-W compact fluorescent irradiation in ultra-pure water for at least 10 h before the photocatalytic reaction. The photo-etching process allows the degradation of unreacted polymers and increases the surface area of the immobilized TiO₂ photocatalyst [22,24–26]. The immobilized photocatalysts were hereafter called as TiO₂/glass, TiO₂/CS/glass, or TiO₂/RR4-CS/glass. An overview of the immobilized TiO₂/RR4-CS/glass photocatalyst is shown in Fig. 1.

2.3. Characterization

The optical absorption properties of the immobilized photocatalysts were examined by a UV–Vis diffuse reflectance spectroscopy (DRS) (Model Lambda 35, PerkinElmer, USA) within 200–800 nm using magnesium oxide (MgO) as the reference. Photoluminescence (PL) emission spectra were measured on a Jobin Yvon Horiba HR 800 UV spectrofluorimeter at an excitation wavelength (λₑ) of 325 nm.

2.4. Experimental setup and procedures

The experiments were conducted in a lab-scale photocatalytic reactor and the setup was similar as reported elsewhere [5,23,24]. The reactor consists of a 45-W compact fluorescent lamp (Dicken Lighting, China) as the irradiation source, which was placed horizontally and in contact with the outer surface of a glass cell with dimensions of 5 × 8 × 1 cm. The lamp has a visible light irradiance (400–700 nm) of 490 W m⁻² and a UV intensity (290–400 nm) of 4.0 W m⁻². A visible light irradiation was conducted by placing a UV filter (Contax, model L39UV) between the glass cell and the lamp. The immobilized photocatalysts were placed inside the glass cell with 20 mL of 10 mg L⁻¹ phenol solution. Aeration was supplied throughout the reaction by using an aquarium pump (Hailea, model ACO-6603). The photocatalytic performance of the immobilized photocatalysts was also compared with the slurry TiO₂ layer in phenol solution. All the experiments were carried out at neutral pH of 6.6 and at room temperature (27°C ± 2°C).

The concentrations of phenol were monitored using a high-performance liquid chromatography (HPLC) on a JASCO HPLC system consisting of a PU-1580 Intelligent HPLC pump equipped with a UV-1570 intelligent UV/vis detector (JASCO, Japan). A Supelcosil C18 reverse phase column (Supelcosil, 25 cm × 4.6 mm, 5 μm) was used for the chromatographic separation at 25°C. A mobile phase was pumped at a flow rate of 0.5 mL min⁻¹, which was made up of a mixture between methanol (chromatography grade) and ultra-pure water with a ratio of 60:40 v/v. At every 20 min interval, 0.5 mL of sample were syringed out from the reaction mixtures and monitored at a wavelength of 220 nm. The percentage of phenol remaining (%) was calculated using the following equation:

\[
\text{Phenol remaining} = \left(\frac{C_t}{C_0} \right) \times 100
\]

where \(C_t\) and \(C_0\) are the concentration of phenol at time \(t\) (min) and the initial concentration, respectively. Triplication of all experiments was conducted under identical conditions and the average results are reported.

2.5. Detection of hydroxyl radicals (OH•)

Terephthalic acid (TA) fluorescence probing technique [27] was adopted for the analysis of OH⁻ radicals generated from the immobilized photocatalysts. The TA solution was prepared by diluting the TA powder in a 2 × 10⁻³ M of NaOH aqueous solution in order to obtain a concentration of 5 × 10⁻⁴ M. The pH of the solution was adjusted to pH 7.0 after the TA powder was dissolved. The immobilized photocatalysts were then immersed in 20 mL of the TA solution and was irradiated for 2 h with a 45-W compact fluorescent lamp. After 2 h of reaction time, the sample was withdrawn from the solution and the latter was analyzed by a fluorescence spectroscopy (model LS-55, PerkinElmer, USA) to detect the hydroxylation product of TA, 2-hydroxyterephthalic acid (TAOH), which emits at 425 nm using an excitation wavelength of 315 nm.

2.6. Mineralization study

The mineralization rate of phenol by the immobilized photocatalysts was determined by total organic carbon (TOC) analysis using a Shimadzu TOC-V CPH/CPN analyzer, (Japan). Similar experimental setup was applied with some
modification. Longer glass plates and glass cell (dimensions 4.7 cm × 15 cm) were used to accommodate 50 mL of 10 mg L\(^{-1}\) phenol solution. About 10 mL of the sample was withdrawn from the solution after every 2 h interval and subjected to TOC analysis.

3. Results and discussion

3.1. Properties of RR4 dye

RR4 dye absorbs strongly in the UV (\(\lambda = 238\) and 282 nm) and visible (\(\lambda = 517\) nm) region (Fig. S1). It has a high absorbance coefficient, \(\varepsilon\) of \(1.5 \times 10^{4}\) M\(^{-1}\) cm\(^{-1}\) at 517 nm [5], which is larger than that of Ru-complex photosensitizers [18,19], but lower than that of other organic dyes, such as Eosin Y, Erythrosin B, and Rose Bengal [28,29]. In addition, the energy level of the conduction band (CB) in TiO\(_2\) (\(E_{\text{CB(TiO}_2)} = -4.2\) eV) [30] is lower than the calculated energy level of the lowest unoccupied molecular orbital (LUMO) for RR4 dye (\(E_{\text{LUMO(RR4)}} = -3.46\) eV) [5]. Thus, the photogenerated electrons after the excitation of RR4 dye may transfer to the conduction band of TiO\(_2\) [31]. In fact, the energy level of RR4 dye is almost similar to Eosin Y (−3.45 eV) and Rose Bengal (−3.55 eV) dyes [29]. Besides, IR absorption spectroscopy analysis shows that CS can strongly adsorb RR4 dye via electrostatic attraction between the amine groups of CS and sulfonic groups of RR4 dye [23]. The strong adsorption between the adsorbent–adsorbate allows the CS to be used as the substrate for the immobilization of the dye sensitizer.

3.2. Characterization of the immobilized photocatalysts

Fig. 2a shows the UV–Vis DRS spectra of the immobilized photocatalysts in the solid state. It demonstrates that the TiO\(_2\)/RR4-CS/glass has a strong and broad absorption band in the visible region due to the saturated concentration of RR4 dye which was around 5–7 wt.%. High concentration of the RR4 dye increased the emissions coming from the dye–dye interactions that resulted in the broadening of the band [32]. The presence of the RR4 dye should increase the photocatalytic activity of the TiO\(_2\) photocatalyst in the visible region since the absorption bands of the TiO\(_2\)/glass and TiO\(_2\)/CS/glass are limited to the UV region only.

Photoluminescence (PL) was also used to determine the effect of RR4 dye on the recombination of electron–hole pairs. As shown in Fig. 2b, the immobilized TiO\(_2\)/glass, TiO\(_2\)/CS/glass, and TiO\(_2\)/RR4-CS/glass photocatalysts displayed broad band emission in the visible region within 400–550 nm, with two emissions at about 420 and 500 nm. The former is attributed to a band–band process, while the latter is ascribed to an excitonic process caused by the surface oxygen vacancies and defects of the semiconductor [33]. All the immobilized photocatalysts showed no shift in the spectra with maximum emission at 500 nm. This indicates that incorporation of the RR4 dye does not significantly affect the properties of the semiconductor. Comparing the three immobilized photocatalysts, the TiO\(_2\)/glass exhibited the highest PL emission intensity, indicating that electron–hole pairs easily recombin [34]. On the other hand, the TiO\(_2\)/RR4-CS/glass materials exhibit the lowest emission intensity, indicating that the excited state of the RR4 dye sensitizer participates in the charge injection process [11]. The interfacial charge transfer process of the excited RR4 dye to the conduction band of TiO\(_2\) inhibits the recombination of electron–hole pairs in TiO\(_2\). The decrease of the recombination rate should increase the production of reactive oxygen species (ROS) and thus the photocatalytic activity of the TiO\(_2\)/RR4-CS material.

3.3. Evaluation of the photocatalytic performance

In order to evaluate the role of the dye sensitizer in the immobilized TiO\(_2\) photocatalyst, a control test was conducted by comparing the photocatalytic performance of the TiO\(_2\)/RR4-CS/glass against the TiO\(_2\)/glass and TiO\(_2\)/CS/glass. The percentage of phenol remaining as a function of time using the immobilized TiO\(_2\)/glass, TiO\(_2\)/CS/glass, and TiO\(_2\)/RR4-CS/glass photocatalysts is shown in Fig. 3. In addition, control experiments involving photolysis and adsorption were also conducted.
Phenol was weakly adsorbed at the surface of all photocatalysts and only 6.0% of phenol were photolyzed in the absence of the immobilized photocatalysts after 2 h of irradiation. This observation proved that both the adsorption and the photolysis processes can be neglected for the removal of phenol. The TiO$_2$/glass and TiO$_2$/CS/glass displayed 82.1% and 86.18% of phenol removal, respectively, under light irradiation after 2 h of reaction. Meanwhile, phenol could be completely removed under similar conditions by the TiO$_2$/RR4-CS/glass.

The pseudo-first-order rate constant, k (min$^{-1}$), was determined by the Langmuir–Hinshelwood kinetic model [35] and the equation is given by:

$$\ln \left(\frac{C_0}{C_t} \right) = -kt$$

where C_0 and C_t are the initial concentration of phenol and the concentration at irradiation time t (min), respectively. The k values were calculated from the linear slope plot of $\ln(C/C_0)$ vs. t and the results are shown in Table 1. Results show that the rate for the TiO$_2$/RR4-CS/glass was significantly higher than those calculated for other immobilized photocatalysts. The rate for the TiO$_2$/RR4-CS/glass was 0.030 min$^{-1}$, which was twice as fast as the TiO$_2$/glass and TiO$_2$/CS/glass. The high photocatalytic activity of the TiO$_2$/RR4-CS/glass can be attributed to its better photonic efficiency and to the decreased recombination of electron–hole pairs. Similar photocatalytic performance between the TiO$_2$/glass and TiO$_2$/CS/glass indicates that the CS sub-layer did not contribute to the removal of phenol. In this case, the phenol removal was only due to the photocatalytic performance of the TiO$_2$ top layer, since there was no occurrence of phenol adsorption by the CS sub-layer.

3.4. Mechanistic studies

In order to understand better the photocatalytic mechanisms and roles of different oxidative radicals, a comparison was made between the degradation curves of phenol by the immobilized TiO$_2$/RR4-CS/glass photocatalyst with those tested under a UV cut-off filter, N$_2$ gas and after the addition of specific radical quenchers (Fig. 4). Visible light irradiation was conducted under a UV cut-off filter in order to demonstrate the ability of chemisorbed RR4 dye to sensitize TiO$_2$. Visible light irradiation only generates weak amounts of electron–hole pairs in TiO$_2$ and thus sensitization should be dominant. The TiO$_2$/RR4-CS/glass shows 14.6% of phenol removal after 2 h under visible light irradiation. This observation explained the improved photocatalytic performance of TiO$_2$/RR4-CS/glass as compared with those by TiO$_2$/glass and TiO$_2$/CS/glass as discussed above. Both TiO$_2$/glass and TiO$_2$/CS/glass can only be activated under UV irradiation since their photoresponse is limited to the UV region. Therefore, high reaction rate achieved under light irradiation was due to two routes that run concurrently: (1) the major route by the TiO$_2$ itself by the small UV irradiance leakage from the light source and (2) the minor route by the dye sensitizer activated by visible light. The UV is generally responsible for enhancing the charge separation and the generation of oxidative species on the surface of TiO$_2$ photocatalyst, while the chemisorbed RR4 dye act as an electron donor to the conduction band of TiO$_2$. The degradation of phenol was completely suppressed when the photocatalytic reaction was carried out under N$_2$ gas. In the absence of dissolved O$_2$, the recombination rate of electron–hole pairs is

![Fig. 3. Percentage of phenol remaining (%) as a function of time using the immobilized TiO$_2$/glass, TiO$_2$/CS/glass, and TiO$_2$/RR4-CS/glass photocatalysts at a pH of 6.6 with a TiO$_2$ loading of 0.98 mg cm$^{-2}$ and an initial phenol concentration of 10 mg L$^{-1}$.](image1)

![Fig. 4. Percentage of phenol remaining (%) as a function of time using the immobilized TiO$_2$/RR4-CS/glass photocatalyst under different conditions at a pH of 6.6 with a TiO$_2$ loading of 0.98 mg cm$^{-2}$ and an initial phenol concentration of 10 mg L$^{-1}$.](image2)
greatly enhanced. Therefore, no oxidative radicals could be formed to promote the photocatalytic degradation. This indicates that the dissolved O₂ served as electron scavengers to reduce the recombination of electron–hole pairs and act as the key reactant to generate superoxide radicals as well as other reactive oxidative species. EDTA was also used during the phenol degradation process as a quencher of holes (h⁺). In the presence of 1 × 10⁻³ M EDTA, the photocatalytic degradation of phenol decreased to 53.2%. This suggests that the predominant active oxidants responsible for initiating the degradation mechanism were the h⁺ and/or OH⁻ species. When adding BQ, a quencher of superoxide radicals, only a slight decrease in the phenol degradation (88.1%) was observed even though dissolved O₂ was present.

The mechanisms of the immobilized TiO₂/RR4-CS/glass photocatalyst were further confirmed by the detection of OH⁻ radicals. Fig. 5 shows the fluorescence (FL) spectral changes of terephthalic acid (TA) solution after 2 h of irradiation by the immobilized TiO₂/glass, TiO₂/CS/glass, and TiO₂/RR4-CS/glass photocatalysts. There was no FL peak observed in the reference sample (in the absence of light irradiation or photocatalysts). This indicates that the increase in FL intensity originates from the reaction between TA and OH⁻ radicals produced during the photocatalytic reactions. It was proven that under these experimental conditions, the hydroxylation reaction of TA proceeded mainly by OH⁻ radicals [27], without the interference from the photoinduced superoxide radicals (O₂⁻•), hydroperoxyl radicals (HOO•⁻), and hydrogen peroxide (H₂O₂) [9]. Besides, the generated FL spectrum had the similar shape and maximum wavelength with that of a standard TAOH [27]. After 2 h of reaction, the TiO₂/RR4-CS/glass had the highest FL intensity which indicated that more OH⁻ radicals were generated by the photocatalyst. Almost similar FL intensities were obtained for TiO₂/glass and TiO₂/CS/glass, indicating that the same concentrations of OH⁻ radicals were produced by these photocatalysts. RR4 dye influenced the formation of OH⁻ radicals in the TiO₂/RR4-CS/glass and enhanced its photocatalytic performance as compared with the TiO₂/glass and TiO₂/CS/glass. Lower recombination of electron–hole pairs and higher formation of OH⁻ radicals promote the photocatalytic performance of the system. The results obtained by the TA experiment confirmed that the OH⁻ radicals were the main active species during the photocatalytic reactions.

Fig. 6 summarizes the overall mechanisms involved in the photocatalytic degradation of phenol by the immobilized TiO₂/RR4-CS/glass photocatalyst. It shows that the enhanced photocatalytic performance of the TiO₂/RR4-CS/glass was attributed to two routes, photocatalysis and sensitization, that run concurrently under light irradiation. When TiO₂ is excited by light (containing low UV intensity), the photoinduced holes (h⁺) migrate to the surface of TiO₂ photocatalyst where they are scavenged by H₂O or OH⁻ ions to produce OH⁺ radicals. The phenol in the bulk solution was directly oxidized by the OH⁻. At the same time, as the chemisorbed RR4 dye absorbs visible light, its electrons will be excited from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Since the energy level of RR4 dye satisfied for an electron transfer process to occur, the excited dye molecule (RR4*) will transfer its electrons into the TiO₂ conduction band. While the dye itself is converted to its cationic radical (RR4⁺•), the transferred electrons together with the photoinduced electrons (e⁻) resulted in the accumulation of excess electrons in the TiO₂ conduction band. The electrons at the surface are scavenged by dissolved O₂ molecules to produce O₂⁻•, HOO•⁻, H₂O₂, and especially OH⁻ radicals that are responsible for the degradation of phenol [35,36]. The OH⁻ and O₂⁻• radicals may also attack the ground state dye and dye radical cations, respectively, which resulted in the degradation of the chemisorbed dye [14]. In addition, the transferred electrons could possibly undergo recombination with the dye radical cations to regenerate the dye in the ground state. These reactions, however, proceed at a slower rate as it competes with the electron transferred and electron scavenging reactions. This is evident by the reduction in the rate of phenol degradation under visible irradiation [13]. Better photoinduced charge carrier separation under light irradiation decreases the recombination of electron–hole pairs and enhanced the photocatalytic efficiency of the system.

3.5. Catalyst recyclability

The reusability of different immobilized photocatalysts was tested up to five consecutive experiments to measure the stability of the immobilized photocatalysts for the photocatalytic degradation of phenol. After each cycle, the immobilized photocatalysts were recovered, washed with ultra-pure water for 30 min and reused. The reusability of the immobilized photocatalysts is shown in Fig. 7 as a function of rate constants obtained in the photocatalytic degradation of phenol. In addition, the photocatalytic degradation of phenol by TiO₂ in slurry mode was also conducted for a comparison.

The results showed that the rate obtained by the TiO₂/ glass and TiO₂/CS/glass remained almost constant from the first to the fifth cycles of their respective applications with the average rate values of 0.013 and 0.014 min⁻¹, respectively. These values are slightly lower than that obtained by TiO₂
in slurry mode whereby the rate obtained in the first cycle was 0.028 min⁻¹. However, the use of TiO₂ in slurry mode hindered the reusability of the photocatalyst. Based on Fig. 7, the TiO₂/RR4-CS/glass gives the best phenol degradation. Under the operation of this photocatalytic system, the average rate was 0.033 min⁻¹.

Although all the immobilized photocatalysts were practically reusable and sustainable in their photocatalytic applications, the rate of TiO₂/RR4-CS/glass was more than twofold higher than the TiO₂/glass and TiO₂/CS/glass. The excellent photocatalytic performance of the TiO₂/RR4-CS/glass originates from the sensitization effect of the chemisorbed RR4 dye. Most importantly, the TiO₂/RR4-CS/glass photocatalyst was reusable and highly stable under the studied conditions. Finally, there was no sign of dye desorption or leaching into the treated aqueous solution since the dye was strongly chemisorbed onto the CS sub-layer.

3.6. Regeneration of the immobilized TiO₂/RR4-CS/glass photocatalyst

During the photocatalytic reaction, the chemisorbed RR4 dye also undergoes oxidation. It was reported previously that the intensity of the RR4 color changes was more visible after repeated cycles of usage [5]. The RR4 color intensity decreases by 20.1% after the fifth cycles of application in ultra-pure water. The oxidation of RR4 dye caused deactivation of the immobilized photocatalyst upon reuse. Such a shortcoming can be overcome by re-adsorption with fresh dye on the spent photocatalyst. This is an added advantage of recycling dye waste. The spent photocatalyst was recovered after the fifth cycle and a fresh solution of the RR4 dye was re-adsorbed.

Fig. 8 shows the reusability of fresh and regenerated immobilized TiO₂/RR4-CS/glass photocatalyst for the photocatalytic degradation of phenol. The results show that the regenerated TiO₂/RR4-CS/glass showed ~22% lower photocatalytic efficiency as compared with the fresh photocatalyst. This result was primarily due to the insufficient amount of RR4 dye adsorbed in the regenerated samples (the adsorption capacity of adsorbed RR4 dye on the CS decreased from 172 to 30 mg g⁻¹) that can be oxidized as a sensitizer. This in turn decreases the number of electrons being transferred to the TiO₂ conduction band under the same light irradiation and consequently decreases the amount of oxidative species generated by the photocatalyst. However, the photocatalyst regained its photocatalytic efficiency and was reusable for at least five more cycles. This evidence suggests that the immobilized TiO₂/RR4-CS/glass photocatalyst can easily be regenerated by a simple and cost-effective method.

3.7. Mineralization study

The mineralization rate of phenol by the immobilized TiO₂/glass, TiO₂/CS/glass, and TiO₂/RR4-CS/glass photocatalysts was monitored by TOC analysis. Fig. 9 shows that the trend of phenol mineralization by the immobilized TiO₂/glass, TiO₂/CS/glass, and TiO₂/RR4-CS/glass photocatalysts
was nearly identical throughout the reaction time, regardless of the pathways taken by each of the system. The TOC reduction was initially slow because at this stage the degradation of the phenol was initiated by branch dissociations with benzene rings still remained intact [37], producing intermediates such as catechol, p-benzoquinone, and hydroquinone as the first oxidation intermediates [38]. The mineralization rate of phenol by the TiO2/RR4-CS/glass at this stage was faster than the TiO2/glass and TiO2/CS/glass due to the presence of the dye sensitizer. Therefore, more oxidative species could react with phenol and its intermediates leading to further oxidation of the by-products, yielding organic acids, such as maleic, oxalic, formic, and acetic [38].

After 4 h of reaction time, most of the phenol molecules were completely removed by the immobilized photocatalysts. Despite that, the mineralization rate of phenol by the TiO2/glass, TiO2/CS/glass, and TiO2/RR4-CS/glass was much slower with a total mineralization of 63.2%, 65.1%, and 76.7%, respectively, after 8 h of reaction time. Longer irradiation time was needed to achieve complete mineralization. This could possibly due to the complicated reaction mechanisms of phenol oxidation. Overall, the TiO2/RR4-CS/glass showed better photocatalytic performance for the mineralization of phenol with major intermediates previously identified as hydroquinone, catechol, and maleic acid [24]. There are no traces of RR4 dye intermediates and inorganic ions detected in the treated phenol solution either by the UV–Vis, HPLC, or ion chromatographic analyses. This likely originates from the low amount of RR4 dye being oxidized during the reaction or due to the re-adsorption of the intermediates produced on the surface of the CS sub-layer.

4. Conclusion

In summary, an immobilized TiO2/RR4 dye-loaded CS photocatalyst (TiO2/RR4-CS/glass) was successfully prepared for the photocatalytic degradation of phenol under a 45-W compact household fluorescent light irradiation. Results from the UV–Vis DRS and PL demonstrated that electron–hole pairs recombination was reduced and the visible light absorption enhanced in the immobilized TiO2/RR4-CS/glass photocatalyst. The photocatalytic degradation and mineralization of phenol by the TiO2/RR4-CS/glass were obviously improved as compared with the TiO2/glass and TiO2/CS/glass. The enhanced photocatalytic performance of the TiO2/RR4-CS/glass can be attributed to two routes, photocatalysis and sensitization, that run concurrently under light irradiation. Both processes contributed to lower recombination of the electron–hole pairs and to better photoinduced charge carrier separation. In addition, the immobilized photocatalyst also demonstrated excellent reusability and good stability.

Acknowledgements

The authors are grateful to the Universiti Sains Malaysia (USM) for supporting this project under the Research University Postgraduate Research Grant Scheme (USM-RU-GRS, 1001/PKIMIA/842070) and the USM Fellowship granted to S. Sabar. The authors would also like to acknowledge the School of Chemical Sciences as well as Geochemistry and Environmental Remediation Research Group (GEoRGe), USM for encouraging the collaboration with Université de Lorraine (UL).

References

C. Su, C. Shao, Y. Liu, Electrospun nanofibers of TiO₂/CdS

N. Hashim, S. Thakur, M. Patang, F. Crapulli, A.K. Ray, Solar

Supplementary information

Fig. S1. UV–Vis DRS spectrum of the RR4 dye in ultra-pure water at neutral pH.