Enhanced visible-light-driven photocatalytic activity of Ag$_2$WO$_4$/g-C$_3$N$_4$ heterojunction photocatalysts for tetracycline degradation

Yu Shia, Yu-bin Tanga*, Fang-yan Chena*, Wei-long Shib, Feng Guoc, Xin-gang Wanga

aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China, Tel. +86-511-84448601; email: ybbill@163.com (Y.-b. Tang), Tel. +86-511-85605157; emails: catchen1029@sohu.com (F.-y. Chen), 291197172@qq.com (Y. Shi), hofs@163.com (X.-g. Wang)

bSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China, Tel. +86-511-85605157; email: shiwl@just.edu.cn

cSchool of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China, Tel. +86-511-85605157; email: gfeng0105@126.com

Received 26 February 2019; Accepted 26 July 2019

Abstract

Heterogeneous photocatalysis has become one of the most potential technologies due to its ability to alleviate energy shortages and environmental pollution. In this work, a heterojunction photocatalyst of Ag$_2$WO$_4$/g-C$_3$N$_4$ was synthesized via simple deposition method. The as-prepared samples were characterized by SEM, HRTEM, X-ray photoelectron spectroscopy, UV–vis, photoluminescence, and photocurrent measurements. The photocatalytic performance of the heterojunction photocatalyst for the degradation of tetracycline under visible light was investigated. It is demonstrated in our experiment that by loading a small amount of Ag$_2$WO$_4$ nanoparticles onto g-C$_3$N$_4$, the photocatalytic activity can be improved for tetracycline degradation. The as-prepared heterojunctions have fast interfacial charge transfer speed and exhibit enhanced visible-light-driven photocatalytic activity for tetracycline degradation. Under the irradiation of visible light, the photocatalytic degradation efficiency of TC (tetracycline) by using Ag$_2$WO$_4$/g-C$_3$N$_4$ heterojunction (3AW-CN) prepared under optimized conditions is 1.08 and 0.63 times higher than that by using pure g-C$_3$N$_4$ and pure Ag$_2$WO$_4$, respectively. The significantly enhanced photocatalytic activity is mainly due to the fact that silver nanoparticles could act as reservoirs and donors for electrons, thereby effectively regulating electron transfer and promoting charge separation.

Keywords: Ag$_2$WO$_4$; g-C$_3$N$_4$; Heterojunction; Tetracycline; Photocatalyst

1. Introduction

As a common antibiotic, TC is widely used in the medical and aquaculture industries [1]. In recent years, due to the abuse of antibiotics and the arbitrary discharge of wastewater from pharmaceutical enterprises, antibiotics and their derivatives remained in water and food, and eventually enriched through the food chains, which has negative impact on human health [2,3]. Therefore, an environmentally friendly method with high-efficiency and low-cost consideration is desperately needed to remove the tetracycline in water. Among many methods, the semiconductor photocatalysts have attracted great attention for the ability to effectively degrade the target pollutants under sunlight. It is well known that visible light accounts for about 42%–45% of sunlight [4,5], while ultraviolet radiation accounting for only about 5% of the total solar radiation [6,7]. So, it is meaningful to develop cheap and highly...
Ag-based compounds and g-C3N4 to separate photogenerated electrons and holes efficiently, inhibit charge recombination of photoelectron–hole pairs.

Therefore, in order to effectively solve the above problems, the bulk phase g-C3N4 needs to be modified, such as constructing a heterojunction semiconductor, doping a noble metal element, introducing a promoter, and so forth. Among these methods, heterojunction semiconductors construction method [23–25] can effectively regulate the charge carriers generation and utilization, and improves the photocatalytic efficiency [26]. Some reported works have synthesized semiconductor catalysts by combining Ag compounds or simple substance silver with g-C3N4, such as Ag2WO4, Ag2SO4, Ag2CrO4, Ag2SO3, and Ag [30–32] were combined with g-C3N4. He et al. [33] synthesized Ag2PO4/g-C3N4 for CO2 reduction [33]. Ong et al. [34] prepared α-Ag2WO4/g-C3N4 photocatalyst with a high mass ratio of Ag2WO4 to g-C3N4, which would limit the practical application of the photocatalyst. However, Ag is a precious metal; high level Ag doping will cause a significant increase in the cost of the photocatalyst preparation, which is unfavourable to the wide application of the catalyst. Therefore, in this work, small amount of Ag2WO4 and g-C3N4 were combined by in situ precipitation method to form the Ag2WO4/g-C3N4 heterojunction photocatalyst, which can not only improve the photocatalytic degradation performance of g-C3N4, but also lower the cost for industrial production.

2. Experimental section

2.1. Synthesis of pure g-C3N4 powder

Pure g-C3N4 powders were prepared by calcination method [38,39]. 5 g dicyandiamide was weighed and placed in an alumina crucible with cover, calcined in a muffle furnace for 4 h at 550°C, the heating rate is 2.3°C/min, then naturally cooled down to room temperature, and ground to obtain pale yellow g-C3N4 powders.

2.2. Synthesis of Ag2WO4/g-C3N4 (AW-CN)

Ag2WO4/g-C3N4 (AW-CN) was prepared by the in situ co-precipitation method [40,41]. In a typical case, 0.334 g of pure g-C3N4 powder was added into 50 mL distilled water with proper stirring, and then successively mixed with 10 mL of 7.59 mmol/L AgNO3 solutions and 10 mL of 3.80 mmol/L Na2WO4 solution with the same stir rate of 500 rpm for 0.5 h and 4 h at room temperature, respectively. The obtained precipitate was washed by distilled water and absolute ethanol for three times, and then dried in a vacuum oven at 25°C to obtain the sample with Ag2WO4 mass fraction of 5%. Ag2WO4/g-C3N4 sample which contains 1%, 3%, 5%, 7%, and 9% Ag2WO4 was marked as 1AW-CN, 3AW-CN, 5AW-CN, 7AW-CN, and 9AW-CN, respectively. Pure Ag2WO4 was prepared by the above method without adding g-C3N4.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of pure g-C3N4, 3AW-CN and pure Ag2WO4.
All diffraction peaks in the XRD pattern (trace b in Fig. 1) are assigned to the Ag$_2$WO$_4$, which is consistent with the values in the standard JCPDS card number (PDF #34-0061) of trace a. Both trace c and d show a strong diffraction peak at 27.3° which corresponds to the (002) plane reflection of the long-range in-plane stack for the g-C$_3$N$_4$ conjugated aromatic unit (JCPDS #87-1526), and the result is similar to the previous report [42]. There is no obvious Ag$_2$WO$_4$ diffraction peak shown in trace c. This is because the mass ratio of Ag$_2$WO$_4$ to g-C$_3$N$_4$ in the 3AW-CN composite photocatalyst is only 3%. Besides, the relevant diffraction peaks are not detected, indicating that the crystal structure of g-C$_3$N$_4$ is well maintained during the synthesis process.

Fig. 2 shows the SEM images of pure g-C$_3$N$_4$, pure Ag$_2$WO$_4$ and 3AW-CN composites. It is from Fig. 2a that the bulk g-C$_3$N$_4$ is composed of thick sheet structure stacks with smooth surface and non-uniform size, but without fixed morphology. As shown in Fig. 2b, pure Ag$_2$WO$_4$ exhibits a regular nanorod shape, which can facilitate sufficient contact with g-C$_3$N$_4$ and increase the transport interface of photogenerated charge. When Ag$_2$WO$_4$ is deposited on g-C$_3$N$_4$ to form a heterojunction photocatalyst, such as 3AW-CN (Figs. 2c–d), it is clear that the introduction of a small amount of Ag$_2$WO$_4$ do not change the overall morphology structure of g-C$_3$N$_4$.

Fig. 3a depicts the TEM image of 3AW-CN, Ag$_2$WO$_4$ is anchored on the g-C$_3$N$_4$ lamellar structure. Ag$_2$WO$_4$ is compounded with g-C$_3$N$_4$ by simple deposition method and deposited randomly on the g-C$_3$N$_4$ lamella without agglomeration. The particle size of Ag$_2$WO$_4$ is about 10–20 nm, as shown as the black spot in circle in Fig. 3a. Moreover, the mapping images of elements in the composite heterojunction photocatalyst show that C, N, Ag, W, and O are uniformly distributed in the HAADF-STEM images (Figs. 3b–g), and the formation of the composite heterojunction are determined.
prepared photocatalyst is evaluated by measuring the degradation efficiencies of TC by all the samples in the absence of any photocatalyst. It is noteworthy that as shown in Fig. 5, the self-degradation of TC is negligible. The concentrations of TC aqueous solutions and photocatalysts decomposition \[37\]. All of the above analysis confirmed the successful synthesis of the Ag\textsubscript{2}WO\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} composite.

Fig. 3. HRTEM images (a), HAADF-STEM (b) and the corresponding elemental mapping images of 3AW-CN (c–g).

X-ray photoelectron spectroscopy (XPS) is used to analyze the elemental composition and chemical state of the sample. As shown in Fig. 4a, it is clearly shown that 3AW-CN consists of C, N, O, Ag, and W. Fig. 4b shows the C 1s spectrum with two different peaks at 284.6 and 288.1 eV. The first peak corresponds to graphitic carbon, and the second peak is derived from a carbon atom bonded with three nitrogen atoms in the g-C\textsubscript{3}N\textsubscript{4} lattice \[43\]. As shown in Fig. 4c, the N 1s XPS spectra can be divided into four peaks, the center of these peaks locate at 398.5, 399.5, 401.0, and 404.1 eV, respectively. The peak at 399.5 eV is attributed to the sp3 hybridized nitrogen atom (N–(C)), and the peak at 401.0 eV is attributed to the amino functional group containing a hydrogen atom (CNH) \[44\], and the π-excitation peak is located at 404.1 eV \[45\]. The XPS spectrum of O 1s in Fig. 4d can be divided into two peaks with binding energy of 530.3 and 532.2 eV, respectively, derived from OH groups, oxygen in adsorbed water or oxygen in Ag\textsubscript{2}WO\textsubscript{4} \[46,47\]. As shown in Fig. 4e, two peaks center locate at the binding energy of 368.1 and 374.2 eV belong to Ag 3d/2 and Ag 3d3/2, respectively \[36\]. As shown in Fig. 4f, two peaks at 35.1 and 37.2 eV correspond to W 4f spectrum. We also analyze the XPS spectrum of Ag 3d in the 3AW-CN sample after one experiment, as shown in Fig. S1. The peaks at 368.3 and 374.4 eV correspond to W 4f spectrum. We also analyze the XPS spectrum of Ag 3d in the 3AW-CN sample after one experiment, as shown in Fig. S1. The peaks at 368.3 and 374.4 eV correspond to Ag nanoparticles, which are derived from Ag\textsubscript{2}WO\textsubscript{4} photo-decomposition \[37\]. All of the above analysis confirmed the successful synthesis of the Ag\textsubscript{2}WO\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} composite.

At present research, the photocatalytic activity of the prepared photocatalyst is evaluated by measuring the degradation rate of TC under visible-light irradiation (\(\lambda > 420\) nm). The concentrations of TC aqueous solutions and photocatalysts dosage are fixed at 10 mg/L and 0.5 g/L, respectively. As shown in Fig. 5, the self-degradation of TC is negligible in the absence of any photocatalyst. It is noteworthy that the photocatalytic degradation efficiencies of TC by all the Ag\textsubscript{2}WO\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} heterostructure photocatalysts containing various quantities of Ag\textsubscript{2}WO\textsubscript{4} are better than that by pure g-C\textsubscript{3}N\textsubscript{4} or pure Ag\textsubscript{2}WO\textsubscript{4}, under the condition of 180 min visible-light irradiation, indicating that the introduction of Ag\textsubscript{2}WO\textsubscript{4} significantly improved photocatalytic activity of g-C\textsubscript{3}N\textsubscript{4}. In detail, the photocatalytic degradation activity of 3% Ag\textsubscript{2}WO\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} (3AW-CN) for TC is excellent, and the degradation efficiency of TC by 3AW-CN reached 76.9%, which is much better than that by pure g-C\textsubscript{3}N\textsubscript{4} (36.8%).

In order to study the optical properties of the as-prepared photocatalysts, the UV–Vis diffuse reflectance spectra of g-C\textsubscript{3}N\textsubscript{4}, Ag\textsubscript{2}WO\textsubscript{4}, and 3AW-CN are measured, as shown in Fig. 6a.

As depicted in Fig. 6a, 3AW-CN exhibits stronger absorption in ultraviolet and visible light region than pure g-C\textsubscript{3}N\textsubscript{4}, which is consistent with the experimental results the photocatalytic degradation TC. And the band gap energy of Ag\textsubscript{2}WO\textsubscript{4} (Fig. 6b, the red trace) is calculated to be 3.07 eV based on the curve of \((\alpha h\nu)^{1/2}\) vs. \(h\nu\), which agrees with the previous reports \[48\]. For pure g-C\textsubscript{3}N\textsubscript{4}, a visible absorption edge appears around 460 nm with an estimated band gap of 2.70 eV (Fig. 6b, the black trace). After g-C\textsubscript{3}N\textsubscript{4} is combined with Ag\textsubscript{2}WO\textsubscript{4}, the absorption of 3AW-CN in the visible-light region was significantly increased compared with pure g-C\textsubscript{3}N\textsubscript{4}.

The PL spectrum reflects the recombination rate of photoexcited carriers \[49\]. Generally, the high PL emission peak indicates the high recombination rate of charge carriers. As shown in Fig. 7, pure g-C\textsubscript{3}N\textsubscript{4} shows a strong PL emission peak at 468 nm, indicating that the recombination of electrons and holes is rapid, while the PL signal of 3AW-CN significantly weakened under the same condition. Clearly, PL spectra demonstrates that the presence of Ag\textsubscript{2}WO\textsubscript{4} in AW-CN significantly impedes the recombination of photoinduced electrons and holes.

Stability is an important factor for the evaluation of high-quality photocatalysts. At present study, the stability of 3AW-CN was investigated by cyclic photocatalytic degradation experiments of TC (Fig. 8a). It is found that 3AW-CN can still maintain excellent photocatalytic performance after five cycle experiments, indicating that 3AW-CN has excellent cyclic stability.

In order to study the possible mechanism of the photocatalytic degradation of TC by the prepared Ag\textsubscript{2}WO\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} photocatalyst, the active species trapping experiment was carried out, as shown in Fig. 8b. As can be seen from Fig. 8b, the addition of Vc as an \(O_2^-\) radical scavenger, caused the most obvious decrease of the photocatalytic degradation efficiency of TC by using 3AW-CN. The results indicate that \(O_2^-\) plays the most important role in the photocatalytic degradation process. It can also be observed that the photogenerated holes improve the photocatalytic degradation of TC.

The separation efficiency of photogenerated electron–hole pairs is further confirmed by the photocurrent response and electrochemical impedance spectroscopy of the samples. On the one hand, the photocurrent density produced by 3AW-CN is significantly stronger than that by g-C\textsubscript{3}N\textsubscript{4} (Fig. 9a). On the other hand, the radius of the arc on the EIS Nyquist diagram of 3AW-CN electrode is obviously smaller than that of g-C\textsubscript{3}N\textsubscript{4} electrode (Fig. 9b). These results indicate that the separation efficiency of photogenerated electron–hole pair induced by 3AW-CN is higher than that by pure g-C\textsubscript{3}N\textsubscript{4}, which is consistent with the PL spectra.
At present study, TOC was detected to evaluate the mineralization efficiency of TC. As shown in Fig. 10, it is clear that only 13.4% of TOC removal efficiency is observed by using pure g-C$_3$N$_4$ sample. However, when the 3AW-CN sample was used, the TOC removal efficiency reaches 39.4%, indicating that TC was more easily to be mineralized by 3AW-CN, rather than by pure g-C$_3$N$_4$. This result is similar to the previous work [50].

Based on the above results, the excellent photocatalytic activity of 3AW-CN can be attributed to two aspects, that is, the increase of visible-light absorption and improvement of separation efficiency of photogenerated electron–hole pairs.
Fig. 5. Photocatalytic activity of the as-prepared photocatalysts toward the degradation of TC.

Fig. 6. UV–Vis diffuse reflectance spectra (a) and band gap energy of g-C₃N₄ and the 3AW-CN (b).

Fig. 7. PL spectra of g-C₃N₄ and 3AW-CN.

Fig. 8. Cycling test (a) and reactive-species-trapping experiments of 3AW-CN under visible light irradiation (b).
Hence, the possible mechanism for photocatalytic degradation of TC by 3AW-CN heterojunction photocatalyst under visible light is proposed in Fig. 11. According to the formula:
\[E_{VB} = X - E_{EC} + \frac{1}{2} E_g \] [35], the valence band positions of pure g-C_3N_4 and pure Ag_2WO_4 are calculated to be 1.71 and 3.11 eV, respectively.

In the light of the band gap (Fig. 6b), the conduction band of g-C_3N_4 and Ag_2WO_4 locates at –0.99 and 0.04 eV, respectively. Obviously, the conduction band of Ag_2WO_4 is more positive than that of g-C_3N_4, indicating that the potentials of g-C_3N_4 and Ag_2WO_4 can match and form an AW-CN heterojunction, so the possible charge separation and transfer mechanisms may exist as follows:

G-C_3N_4 absorbs visible-light and was excited to produce photogenerated electrons, leaving corresponding photogenerated holes on the valence band. At the same time, Ag^+ is reduced to Ag nanoparticles under illumination, and then Ag nanoparticles absorb visible-light and generate electrons due to SPR effect [51]. As the electron reservoir and donor, Ag nanoparticles can transfer electrons to the conduction band of g-C_3N_4 and Ag_2WO_4. Finally, the electrons on the conduction band of g-C_3N_4 (~0.99 eV) are transferred to the more positive position of the Ag_2WO_4 conduction band (0.04 eV) for reacting with oxygen molecules in water to produce O_2 during the transferring process, and the holes on the valence band of g-C_3N_4 is used to decompose TC. Therefore, O_2 and holes are the main active species, which is consistent with the results of active species trapping experiment of the 3AW-CN heterojunction.

Overall, heterojunction photocatalyst Ag_2WO_4/g-C_3N_4 can quickly and effectively separate photogenerated electron–holes, and then a large number of O_2 was induced to be generated to participate in the photocatalytic degradation reaction of TC. Finally, TC is effectively removed.

4. Conclusions

In summary, Ag_2WO_4/g-C_3N_4 heterojunction photocatalyst which contains a small quantity of Ag_2WO_4 is successfully...
synthesized by a simple precipitation method. Compared with pure g-C$_3$N$_4$ and pure Ag$_2$WO$_4$, AW-CN can significantly enhance the photocatalytic degradation activity of tetracycline (TC) under visible-light irradiation. Especially, AW-CN shows the highest photocatalytic degradation efficiency of TC (76.9%, 180 min).

The improvement of photocatalytic activity is due to three aspects: first, the deposition of Ag$_2$WO$_4$ enhances the absorption of visible-light by g-C$_3$N$_4$; second, the heterojunction effectively inhibits the recombination of photogenerated electron–hole pair; at last, as the reservoir and donor of electrons, silver nanoparticles can effectively regulate the transfer of electrons to the conduction band of Ag$_2$WO$_4$, thus accelerating the photodegradation reaction.

Acknowledgement

This work was supported by Zhangjiagang Science and Technology Support Program (Social Development) of Jiangsu Province, China (grant number: ZKS1510).

References

[34] W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Heterostructured Ag@g-C$_3$N$_4$ (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal., B, 180 (2016) 530–543.

Supporting information:
S1. Structural characterization

X-ray diffraction patterns of materials prepared were recorded using an X’Pert-Pro MD (Holand) D/Max-yA X-ray diffractometer with Cu Kα radiation (λ = 0.154178 nm). High-resolution transmission electron microscope was performed with an FEI-Tecnai F20 microscope operating at 200 kV, respectively. X-ray photoelectron spectroscopy (XPS) was carried out on a KRATOS Axis ultra-DLD X-ray photoelectron spectrometer with a monochromatic Al Kα X-ray source. UV–vis absorption spectra of the samples were recorded on a UV–Vis spectrophotometer (UV-2550, Shimadzu Instrument Co. Ltd., Japan) in the tested range of 200–800 nm. Photoluminescence (PL) spectra of the as-prepared samples were detected by Fluorolog-TCSFC Luminescence spectrometer. The photocurrent–time (i-t) curves and electrochemical impedance spectroscopy (EIS) measurements were performed on a CHI 920C workstation (CH Instruments, Chenghua, Shanghai, China) using a standard three-electrode cell with a platinum wire as reference electrode and a saturated calomel electrode as counter electrode. The i-t curves were gained at open circuit potential in 0.1 M Na$_2$SO$_4$ electrolyte and a 300 W Xenon lamp with UV–Vis cutoff filter (λ > 420 nm) was used as the visible-light source. The EIS was recorded by using an alternating voltage of 5 mV amplitude in the frequency range of 104 to 102 Hz.

Fig. S1. XPS spectrum of Ag 3d in the 3AW-CN sample after one experiment.
Total organic carbons (TOC) were measured on a multi N/C 2100 (Analytik Jena AG, Germany) TOC analyzer.

S2. Photocatalytic degradation experiment

The photocatalytic activity of g-C₃N₄ structure and its hybrid composites Ag₂WO₄/g-C₃N₄ was investigated for TC degradation without adjusting the pH. A 150 W Xenon arc lamp simulated solar light with intensity 100 mW cm⁻² was used as a visible-light source.

100 mL of TC aqueous solutions (10 mg/L) was taken into a 200 mL beaker and 50 mg of the catalyst was added at each cycle runs. Throughout the experiments, the TC aqueous solution was maintained at a distance of 15 cm away from the light source.

The solution was stirred under the dark condition for 30 min before irradiation in order to obtain the adsorption–desorption equilibrium.

The degradation of TC was analyzed by UV–visible spectrophotometer (λₘₐₓ of TC = 357 nm) at a regular time intervals, and, 5 mL of the samples were taken each time. After centrifugation, the supernate was examined using spectroscopy analysis and the changes in absorption vs. irradiation time (C/C₀ vs. t) were recorded.

The photodegradation percentage of TC was calculated using the formula as follows:

\[\text{Photodegradation} \% \text{ of TC} = \left(\frac{C₀ - C}{C₀} \right) \] (S1)

where, \(C₀ \) is the concentration of TC aqueous solutions before irradiation and \(C \) is the concentration of TC aqueous solutions after a particular period of irradiation time.