Degradation pathways of 1,4-dioxane in biological and advanced oxidation processes

Ahmed Tawfik
National Research Centre, Water Pollution Research Department, Giza 12622, Egypt, emails: tawfik8@hotmail.com, Tawfik_8@yahoo.com

Received 26 April 2019; Accepted 28 September 2019

ABSTRACT

1,4-Dioxane is widely used in industry and seriously contaminates the ecosystem due to intentional discharge into water streams. Treatment of water/wastewater containing 1,4-dioxane is greatly growing since, it is listed as a priority pollutant and a hazardous compound for humans and environment. Degradation pathways of 1,4-dioxane in biological and advanced oxidation processes (AOPs) are extensively discussed in this review to identify potential bottlenecks which limit 1,4-dioxane removal processes and possibly allow the identification of the needed treatment approach. Furthermore, the efficiency of hybrid photocatalytic oxidation processes for treatment of wastewater rich 1,4-dioxane is comprehensively performed. During the degradation of 1,4-dioxane, several by-products/intermediates are produced as the consequence of the ring opening of 1,4-dioxane molecules, namely: ethylene glycol, glycolic acid, oxalate anion and formic acid. The efficiency of AOPs for oxidation of 1,4-dioxane is an excellent technology; however, the treatment cost is still quite high. Phytoremediation of water/wastewater containing 1,4-dioxane is a promising approach where conversion of 1,4-dioxane into biomass is performed avoiding severe pollution conditions.

Keywords: 1,4-Dioxane; Advanced oxidation processes; Hybrid photocatalysis; Biodegradation; Phytoremediation

1. Introduction

The properties of 1,4-dioxane are presented in Table 1 and its concentration is quantified using gas chromatography with solid-phase microextraction (SPME-GC) [1]. 1,4-Dioxane is mainly used as a solvent in the manufacturing processes of various industries, that is, pharmaceuticals, polyester, personnel care products, pesticides, magnetic tapes, papers, cotton, textile, adhesives, cosmetics, dyes, oils, waxes, resins, cellulotic esters and ethers [2]. Furthermore, 1,4-dioxane is frequently utilized as a stabilizing agent for chlorinated solvents such as methyl chloroform 1,1,1-trichloroethane (1,1,1-TCA). Less attention has been given to the negative impacts of 1,4-dioxane which is carelessly discharged into sewerage network and/or water bodies resulting in a severe and serious pollution conditions. The contaminated water with 1,4-dioxane causes liver damage, kidney failure and cancer for humans and animals [3]. Moreover, the presence of 1,4-dioxane in the water creates large contaminant plumes which negatively affects drinking water supplies [4,5].

Treatment of water/wastewater containing 1,4-dioxane is greatly growing since it is listed as a priority pollutant and a hazardous compound for humans and environment [6–8]. The fate of 1,4-dioxane in the environment is urgently required [9]. The removal of 1,4-dioxane from water/wastewater using air-stripping and adsorption was quite poor due to its high solubility and low vapor pressure [10]. Distillation at boiling point of 101°C was used for removal of 1,4-dioxane by Priddle and Jackson [5] but it is a highly expensive technique. Likely, classical oxidation processes using chlorine was efficient for elimination of 1,4-dioxane from water/wastewater and unfortunately produced other intermediate compounds more toxic than the original one [7,9,11]. Odah et al. [12] used soil vapor extraction method for removal of
1,4-dioxane, but a considerable residual value remained in the treated effluent due to a high solubility of the compound which creates preferential partitioning into pore water rather than vapor condition.

Advanced oxidation processes (AOPs) using ozone and hydrogen peroxide \((O_3 + H_2O_2) \) [10,13] or \(H_2O_2 \) and UV light [13] were efficiently used for removal of 1,4-dioxane from water/wastewater (Table 2). Combination of hydrogen peroxide and ferrous iron [3] rapidly oxidized 1,4-dioxane into more readily biodegradable by-products (Fig. 1). Yamazaki et al. [3] found that addition of Fe(II) under ultrasonic irradiation improved the degradation rate of 1,4-dioxane and mineralization process. 85% and 75% removal of the 1,4-dioxane were achieved in the microwave-generated plasma under alkaline and acidic conditions, respectively, at reaction time of 5 min. The immobilization of gold nanoparticles on titanium dioxide (Au–TiO2) promoted the photocatalytic degradation of 1,4-dioxane [41] (Table 2). This was not the case that 1,4-dioxane removal was increased at increasing concentration of \(HO• \) radicals and photons [34,35]. Merayo et al. [36] found that 1,4-dioxane was rapidly oxidized in the presence of hydrogen peroxide \((H_2O_2) \) and ferrous iron (FeSO\textsubscript{4}). Ozone \((O_3) \) in combination with hydrogen peroxide \((H_2O_2) \) effectively oxidized 1,4-dioxane to be more readily biodegradable products [34]. Stefan and Bolton [13] investigated the degradation and mechanism of removal of 1,4-dioxane using UV/H\textsubscript{2}O\textsubscript{2} process and found that formic acid was produced due to the degradation of 1,2-ethanediol diformate (EDDF) with \(HO• \) radicals. Ultrasonic irradiation supplemented with Fe(II) improved the decomposition rate and mineralization efficiency of 1,4-dioxane [37]. Heterogeneous photocatalysis is a promising alternative AOP which comprises a semiconductor catalyst in a solid form (TiO\textsubscript{2}, ZnO) incorporated with ultraviolet light (UV) (Fig. 2) [38]. This technique promotes the production of hydroxyl radicals and positive holes on the catalyst surface with a high oxidizing power of ~3.0 eV [39] for degradation of refractory pollutants [40].

2.1. Homogeneous processes

Hydrogen peroxide \((H_2O_2) + UV \) light, \(H_2O_2 + O_3 \) and \(H_2O_2 + UV \) light + \(O_3 \), represented the main photochemical homogenous oxidation processes utilized for degradation of 1,4-dioxane rich wastewater (Fig. 3). Furthermore, Fenton process is the electron transfer between \(H_2O_2 \) and ferrous ion \((Fe^{2+}) \), which is suitable for treatment of heavily loaded industrial effluents (Fig. 4). Combination of UV light and Fenton reaction process is namely photo-Fenton reaction process where the photo-recovery of catalytic \(Fe^{2+} \) and the photo-decarboxylation of the refractory ferric carboxylate complexes took place.

2.1.1. Photochemical

2.1.1.1. UV-photolysis

The degradation of 1,4-dioxane by \(HO• \) radicals occurred at wavelengths ≥ 235 nm where these oxidants are produced due to photolysis of \(H_2O \) (Eq. (1)) [41–50] (Table 3). The oxidation of 1,4-dioxane using \(HO• \) radicals is taken place with UV-C wavelength ranging from 200 to 280 nm, which indicates that 1,4-dioxane is initially degraded by photons (hv) in the UV-A range (Table 2). Both \(HO• \) radicals and photons contributed to the degradation process in the photolytic reaction of 1,4-dioxane using UV-C. Coleman et al. [30] found that 1,4-dioxane removal was increased at increasing concentration of \(HO• \) radical. However, the removal efficiency of 1,4-dioxane was only 3%–4% under UV-A condition, and slightly increased up to 5%–12% at UV-C of 16.9 mW/cm at reaction time of 4.0 h [41] (Table 2). This was not the case.

Table 1

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(\text{C}_4\text{H}_8\text{O}_2)</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>88.106 Da</td>
</tr>
<tr>
<td>Density</td>
<td>1.028 g/cm3</td>
</tr>
<tr>
<td>Boiling point</td>
<td>101.2°C</td>
</tr>
<tr>
<td>Heat of vaporization</td>
<td>98.6 cal/g</td>
</tr>
<tr>
<td>Freezing point</td>
<td>11.85°C</td>
</tr>
<tr>
<td>Specific heat</td>
<td>36.01 cal/(mol K)</td>
</tr>
</tbody>
</table>

1,4-dioxane properties

1,4-dioxane properties

Formula: \(\text{C}_4\text{H}_8\text{O}_2 \)

Molecular weight: 88.106 Da

Density: 1.028 g/cm3

Composition:
- C (54.53%)
- H (9.15%)
- O (36.32%)

Boiling point: 101.2°C

Heat of vaporization: 98.6 cal/g

Freezing point: 11.85°C

Specific heat: 36.01 cal/(mol K)
<table>
<thead>
<tr>
<th>Processes</th>
<th>Operating conditions</th>
<th>%R</th>
<th>Intermediates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Homogeneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Photochemical processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-light</td>
<td>Reaction time (90 min.)</td>
<td>18% as COD</td>
<td>[34]</td>
<td></td>
</tr>
<tr>
<td>UV-A region</td>
<td>4.0 h, initial pH of 3</td>
<td>3%–4%</td>
<td>[41–42]</td>
<td></td>
</tr>
<tr>
<td>UV-C region</td>
<td>Irradiation period (2 h)</td>
<td><15%</td>
<td>[15]</td>
<td></td>
</tr>
<tr>
<td>O$_3$/UV</td>
<td>Reaction time (90 min), 1,4-dioxane initial concentration = 100 mg/L</td>
<td>52% as COD</td>
<td>[34]</td>
<td></td>
</tr>
<tr>
<td>O$_3$/H$_2$O$_2$/UV</td>
<td>Reaction time (90 min.) 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ (w/w) = 0.5 (pH = 4 and reaction time 90 min)</td>
<td>94%</td>
<td>[42]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 0.5</td>
<td>91%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(pH = 7 and reaction time 90 min) 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 0.5</td>
<td>92%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(pH = 10 and reaction time 90 min.) 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 0.5</td>
<td>96%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(pH = 10 and reaction time 90 min) 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 0.25</td>
<td>92%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(pH = 10 and reaction time 90 min) 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 0.75 pH = 10 and reaction time 90 min.</td>
<td>94%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 1</td>
<td>86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH = 10 and reaction time 90 min.</td>
<td>75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 1.25</td>
<td>75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH = 10 and reaction time 90 min. 1,4-dioxane initial concentration = 100 mg/L, H$_2$O$_2$/O$_3$ = 1.5</td>
<td>64%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. Chemical processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone (O$_3$)</td>
<td>Reaction time (90 min)</td>
<td>35% as COD</td>
<td>[41,42]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH > 9, $T=25^\circ C$, 1,4-dioxane (247.8 mg/L; 450 mg/L COD), 1 g/L (COD) = 2.125 g/L H$_2$O$_2$</td>
<td>100%</td>
<td>Ethylene glycol as a primary intermediate at alkaline pH and ethylene glycol diformate at pH of 5.7 [42]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH < 5.7, $T=25^\circ C$, 1,4-dioxane (247.8 mg/L; 450 mg/L COD), 1 g/L COD = 2.125 g/L H$_2$O$_2$</td>
<td>100%</td>
<td>pH < 5.7, $T=25^\circ C$, 1,4-dioxane (247.8 mg/L; 450 mg/L COD), 1 g/L COD = 2.125 g/L H$_2$O$_2$</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Continued

<table>
<thead>
<tr>
<th>Processes</th>
<th>Operating conditions</th>
<th>%R</th>
<th>Intermediates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenton process ((\text{Fe}^{2+} + \text{H}_2\text{O}_2))</td>
<td>pH = 2.8, ([\text{H}_2\text{O}2]/\text{COD}{0} = 4.250) and ([\text{H}_2\text{O}2]/[\text{Fe}^{2+}]{0} = 1)</td>
<td>100%</td>
<td>Ethylene glycol, glycolic acid, oxalate anion and formic acid</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td>Initial pH (2.8) with 1 M (\text{H}_2\text{SO}_4), optimum molar ratio ([\text{H}_2\text{O}_2]/[\text{Fe}^{2+}] = 5), (\text{H}_2\text{O}_2) (35% w/v), ([\text{H}_2\text{O}2]/[\text{COD}]{0} = 2.125)</td>
<td>75% as</td>
<td>Ethylene glycol and formic acid</td>
<td>[43]</td>
</tr>
</tbody>
</table>

2. Heterogeneous

2.1. Photochemical process

Zero-valent iron (Fe\(^0\)) and UV-C light

| | pH values 3, initial pH of 3 | 89% | EQDF (≤1.1 ± 0.1 mg/L) | [41] |
| | pH values 3, initial pH of 3 | 29% | EQDF (≤1.1 ± 0.1 mg/L) | [43] |

Fe\(^0\)/UV/ \(\text{H}_2\text{O}_2\)

| | Initial concentration of 1,4-dioxane = 36 ppm, 50 mg/L \(\text{NaHCO}_3\) \(\text{L}\), pH values 3, 7 and 11, Time = 3.0 min | 100%| Methoxyacetic and acetic acids, Ethylene glycol and formic acid (the main initial by-product). Carboxylic acids was detected. | [43] |

Fe\(^0\)/solar light/ \(\text{H}_2\text{O}_2\)

| | pH values 3, initial pH of 3 | 65% | EGDF (≤1.1 ± 0.1 mg/L) | [44] |

2.2. Chemical

TiO\(_2\) alone (dark conditions)

| | pH values 3, initial pH of 3 | 0% | EQDF (≤1.1 ± 0.1 mg/L) | [15] |

2.3. Photocatalysis

TiO\(_2\) slurry P25 + UVA

| | Initial concentration of 1,4-dioxane = 36 ppm, 50 mg/L \(\text{NaHCO}_3\) \(\text{L}\), pH values 3, 7 and 11, Time = 3.0 min | 100%| EGDF was detected at both pH 3 and 7, but no EGDF was detected at pH 11 | [15] |

TiO\(_2\) - sol–gel + UVA

| | Initial concentration of 1,4-dioxane = 36 ppm, 50 mg/L \(\text{NaHCO}_3\) \(\text{L}\), pH values 3, 7 and 11, Time = 3.0 min | 94% | The reaction was faster as follows, the P25 slurry > P25 immobilised > TiO\(_2\) sol–gel. However, the use of suspension catalyst requires a subsequent filtration step to remove TiO\(_2\) particles from water which certainly increased the treatment cost | [15] |

TiO\(_2\) Immobilized P25 + UVA

| | Initial concentration of 1,4-dioxane = 36 ppm, 50 mg/L \(\text{NaHCO}_3\) \(\text{L}\), pH values 3, 7 and 11, Time = 3.0 min | 90% | 1,2-ethanediol diformate and formic acid | [3] |

TiO\(_2\) + UV

| | pH 5.0 and 1.5 g/L \(\text{O}_2\), 0.29 min. \(\text{P25-TiO}_2\) suspension = 10.0 g/L, The initial pH = 5.7, \(\text{T} = 25^\circ\text{C}\), (Lamp of 450 W), light intensity = 788 Wm\(^{-2}\), 360 kJ/L | 59.0 | 1,2-ethanediol diformate and formic acid | [3] |

Solar light/TiO\(_2\)

| | Xe lamp (300 W), light intensity (444 Wm\(^{-2}\)), 360 kJ/L, The initial pH = 5.7, \(\text{P25-TiO}_2\) suspension = 10.0 g/L, \(\text{T} = 25^\circ\text{C}\), (Lamp of 450 W), light intensity = 788 Wm\(^{-2}\), 360 kJ/L | 45% | Ethylene glycol diformate (EGDF) and formic acid. Some acetic acid was detected. The mixture of methoxyacetic and glycolic acids was below 5.6 ± 0.2 mg/L. Ethylene glycol monofomate (EGMF) was ≤0.03 ± 0.01 mg/L | [45] |

Solar light/TiO\(_2\)

| | Xe lamp (300 W), light intensity (444 Wm\(^{-2}\)), 470 kJ/L, The initial pH = 5.7, \(\text{P25-TiO}_2\) suspension = 10.0 g/L, \(\text{T} = 25^\circ\text{C}\), (Lamp of 450 W), light intensity = 788 Wm\(^{-2}\), 360 kJ/L | 60% | EGDF and formic acid | [43] |
Fig. 1. Advanced oxidation processes (AOPs) treating wastewater rich 1,4-dioxane.

2.4. Hybrid photocatalysis

Immobilized nitrogen and fluorine co-doped titanium dioxide (NF-TiO₂) composite with monodisperse TiO₂ nanoparticles

Immobilization of gold nanoparticles on the surface of TiO₂ powder

TiO₂-Cs₂,5H₀5 PW₁₂O₄₀ hybrid films

4 h of UV radiation

100%

Ethylene glycol diformate (EGDF) (1,2-ethanediol diformate) was the intermediate

≤100%

Ethylene glycol diformate (EGDF), ethylene glycol monoformate (EGMF), and formic acid were the major reaction intermediates

60%

[46]

[43]

[47]

[48]
Fig. 2. Semiconductor for photocatalysis process.

Fig. 3. Homogenous oxidation processes degrading 1,4-dioxane rich wastewater.

Fig. 4. Fenton and photoFenton oxidation processes degrading 1,4-dioxane rich wastewater.
for Stefan and Bolton [13] who reported that 1,4-dioxane is a very weak absorber of UV light and subsequently cannot be degraded by photolysis process.

2.1.1.2. UV/hydrogen peroxide (H$_2$O$_2$)

Photo-induced oxidation process using UV light in combination with H$_2$O$_2$ have proven to be very efficient for the removal of toxic organic pollutants particularly 1,4-dioxane [31–34,51–68]. The degradation of 1,4-dioxane was improved using UV photolysis in the presence of H$_2$O$_2$ [69]. 88%–94% removal of the initial concentration of 1,4-dioxane was occurred after 60 min of irradiation. The H$_2$O$_2$ generates hydroxyl radical due to photolysis process and rapidly decay of 1,4-dioxane (Eqs. (2) and (3)) into intermediates and finally into carbon dioxide [50,68]. The removal efficiency of 1,4-dioxane was 36.3% using H$_2$O$_2$/UV at reaction time of 8.0 h and initial concentration of 450–600 ppm [49] (Table 2). The degradation rate of 1,4-dioxane was optimized at H$_2$O$_2$ concentration of 30 ppm resulting in the highest mineralization rate of 0.5 μgC/min. [31] (Table 2). However the mineralization rate was substantially dropped at H$_2$O$_2$ concentration of 60 ppm. This was mainly due to an excess of H$_2$O$_2$ in the reaction medium that acts as a hydroxyl radical scavenger resulting in a decrease in the mineralization rate of 1,4-dioxane [69]. Excessive addition of H$_2$O$_2$ in the reaction medium generates more HO$^\cdot$ radicals which will produce much less reactive hydroperoxy radicals, HOO$^\cdot$ [70]. The required concentration of H$_2$O$_2$ is mainly dependent on the H$_2$O$_2$/1,4-dioxane molar ratio [71].

2.1.1.3. UV/peroxydisulfate (S$_2$O$_8^{2–}$)

Light assisted degradation of 1,4-dioxane was carried out by Maurino et al. [68] in the presence of sodium peroxysulfate. The S$_2$O$_8^{2–}$/UV treatment provided the highest removal efficacy of 1,4-dioxane and total organic carbon (TOC) at wavelength light < 295 nm. Combination of UV irradiation with S$_2$O$_8^{2–}$ induces a photolytic decomposition resulting in the anion SO$_4^{2–}$, radical which reacts primarily with the organics as electron acceptor [72]. The SO$_4^{2–}$ radical is released due to dissociation of peroxysulfate (S$_2$O$_8^{2–}$) in the presence of light where organics reacts with SO$_4^{2–}$ radical according to Eqs. (4)–(6) (Table 3). However Maurino et al. [68] observed a strong inhibition of the S$_2$O$_8^{2–}$/UV treating 1,4-dioxane in the presence of HCO$_3$ where the oxidizing species were scavenged by HCO$_3$ resulting in CO$_3^{2–}$ [73]. The degradation rate of 1,4-dioxane [RH$_2$] was decreased due to consumption of HO$^\cdot$ and SO$_4^{2–}$ radicals based on Eqs. (7)–(9) (Table 3). Likely, the photocatalytic degradation of trichloroethylene was inhibited due to the presence of high concentration of bicarbonate ions in the reaction medium [74].

2.1.2. Chemical

2.1.2.1. Ozonation (O$_3$)

Among the different AOPs, ozone (O$_3$) is particularly promising oxidizing agent for treatment of recalcitrant organics such as 1,4-dioxane where it has the capability to produce high levels of HO$^\cdot$ and the possibility of treating large volume of water flows at full scale [51–55]. O$_3$ process is very efficient for removal of several toxic non-biodegradable compounds without producing residuals [56–60]. HO$^\cdot$ produced through the O$_3$ decomposition [61–64] is much stronger and less selective oxidant than ozone [65,66]. The O$_3$ does not react strongly with the 1,4-dioxane compound (Eqs. (10)–(12)) (Table 3) and the removal efficiency is mainly due to oxidation by OH$^\cdot$ radicals (Eq. (13)) [67] at alkaline pH value [55,60,64]. This chain reactions of OH$^\cdot$ production is initiated in the absence of H$_2$O$_2$ by hydroxide anions at high pH values (Eqs. (10) and (11)), where at the reactions proceeds over the conversion of O$_2^–$ into OH$^\cdot$ (Eqs. (12) and (13)) (Table 3). Barndok [75] found that ozonation (O$_3$) of both synthetic solution of 1,4-dioxane and industrial wastewaters containing 1,4-dioxane and 2-methyl-1,3-dioxolane (MDO) was very efficient resulting in 90% of COD removal and complete removal of 1,4-dioxane and MDO. The degradation at pH > 9 occurred faster through the formation of ethylene glycol as a primary intermediate; whereas the decomposition in acidic conditions (pH < 5.7) consisted in the formation and slower degradation of ethylene glycol difluoride (Table 3).

2.1.2.2. Peroxone (H$_2$O$_2$ + O$_3$)

O$_3$ plays a crucial role for the release of OH$^\cdot$ from H$_2$O$_2$ (Eq. (14)) (Table 3). Combination of O$_3$ with H$_2$O$_2$ would accelerate the oxidation process of 1,4-dioxane; however, the use of H$_2$O$_2$ can be costly for high loads [11]. The presence of H$_2$O$_2$ significantly enhanced the oxidation process of 1,4-dioxane at neutral pH value of 7.0 ± 0.1, as the H$_2$O$_2$ contributes to the generation of OH$^\cdot$ through adduct formation proceeded by the conversion of O$_2^–$ into HO$^\cdot$ radicals [11] (Table 2). The O$_3$/H$_2$O$_2$ process was used to enhance the biodegradability of 1,4-dioxane [11]. Kwon et al. [34] compared the efficiency of O$_3$/O$_3$/ultraviolet (UV), and O$_3$/UV/H$_2$O$_2$ for treatment of dioxane-contaminated water and found that the combination H$_2$O$_2$/O$_3$ was efficient for oxidation of 1,4-dioxane and produced more readily biodegradable by-products [11]. The oxidation potential (E$_0$) of the HO$^\cdot$ is 2.80 V which is much higher than those for ozone (E$_0$ = 2.07 V). Combination of ozone with UV and/or H$_2$O$_2$ produces hydroxyl, peroxyl and superoxide radicals which should synergistically accelerate the degradation of the organic contaminants [76] (Table 2). HO$^\cdot$ radicals are generated due to the interaction between the ozone and the hydrogen peroxide (Eq. (14); Table 3) [77–81]. Complete mineralization of 1,4-dioxane was achieved at H$_2$O$_2$/O$_3$ (w/w) ratio of 0.5 [34]. However, an excess amount of H$_2$O$_2$/O$_3$ (0.75, 1, 1.25 and 1.5) negatively affected on the removal efficiency of 1,4-dioxane which acts as a radical scavenger at high concentrations and the formation of much less powerful *OH radicals (Eq. (15)). Nevertheless, the removal efficiency of 1,4-dioxane was slightly higher at pH 10 (96%) than those achieved at pH 4 (92%) and pH 7 (92%) after reaction time of 90 min. this was mainly due to the highest generation of OH radical (Table 2).

2.1.2.3. Peroxone activated persulfate

Dissolved ozone and hydrogen peroxide were used to activate sodium persulfate resulting in peroxone activated persulfate (PAP) which represents an excellent oxidant for
refractory compounds [82], PAP facilitates the production of two strong oxidants, that is, hydroxyl (2.8 V) and sulfate (2.5 V) radicals for oxidation of organic contaminants [82–84]. PAP was used for in situ remediation and treating of 1,4-dioxane [85–91]. Eberle et al. [91] investigated the fate of single-contaminant of 1,4-dioxane and in the presence of trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) using a peroxyne activated persulfate (PAP). They found that the oxidation rate of each contaminant was linearly increased at increasing persulfate concentration and the degradation

<table>
<thead>
<tr>
<th>Reaction process</th>
<th>Equations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Homogeneous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Photochemical reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>H₂O/OH⁻ + hv ≤ 235 nm → HO⁺ + H⁺</td>
<td>[49,50]</td>
</tr>
<tr>
<td></td>
<td>H₂O₂ + hv (2235 nm) → 2HO⁺</td>
<td>[31–34]</td>
</tr>
<tr>
<td></td>
<td>C₄H₈O₂ + HO⁺ → C₄H₇O₂ + H₂O</td>
<td>[51–68]</td>
</tr>
<tr>
<td>UV/ S₄O₈²⁻</td>
<td>S₄O₆²⁻ + hv → 2 SO₄⁻</td>
<td>[72–75]</td>
</tr>
<tr>
<td></td>
<td>SO₄⁺ + RH₂ → SO₄⁻ + H⁺ + RH⁺</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>RH⁺ + S₄O₂⁻ → R + SO₄⁻ + H⁺ + SO₄⁺</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>CO₄⁺ + RH₂ → HCO₃ + RH⁺</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>SO₄⁺ + RH₂ → SO₄⁻ + H⁺ + RH⁺</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>OH⁺ + RH₂ → H₂O + RH⁺</td>
<td>[9]</td>
</tr>
<tr>
<td>1.2. Chemical reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozonation (O₃)</td>
<td>O₃ + OH⁻ → O₃⁻ + HO⁺</td>
<td>[56–66]</td>
</tr>
<tr>
<td></td>
<td>O₃ + O₃⁻ → O₂⁺ + O₂</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>O₂⁺ ↔ O⁺ + O₂</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>O⁺ + H₂O ↔ OH⁺ + OH⁻</td>
<td>[13]</td>
</tr>
<tr>
<td>Peroxone process (H₂O₂ + O₃)</td>
<td>O₃ + H₂O₂ → HO⁺ + HO⁺ + 2O₂</td>
<td>[11,34]</td>
</tr>
<tr>
<td></td>
<td>'OH + H₂O₂ → HO⁻ + H₂O</td>
<td>[15]</td>
</tr>
<tr>
<td>Fenton and Fered-Fenton</td>
<td>Fe²⁺ + H₂O₂ → Fe³⁺ + OH⁺ + OH⁻</td>
<td>[111–117]</td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + e⁻ → Fe³⁺ E° = 0.77 V</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>O₂⁻ + 2H⁺ + 2e⁻ → H₂O₂ E° = 0.70 V</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>2H⁺ + 2e⁻ → H₂ E° = 0.0 V</td>
<td>[19]</td>
</tr>
<tr>
<td></td>
<td>H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O₂ E° = 0.53V</td>
<td>[20]</td>
</tr>
<tr>
<td>Mechanism of H₂O₂ decomposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + H₂O₂ → Fe³⁺ + HO₂⁺ + H⁺</td>
<td>[21]</td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + OH⁻ → Fe³⁺ + OH⁻</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + HO₂⁻ → Fe³⁺ + HO⁺</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + HO₂⁻ → Fe³⁺ + O₂⁺ + H⁺</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>OH⁻ + H₂O₂ → HO₂⁻ + H₂O</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>HO₂⁻ + HO₂⁻ → H₂O₂</td>
<td>[26]</td>
</tr>
<tr>
<td>2. Heterogeneous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Photocatalysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero-valent iron (Fe⁰) microspheres</td>
<td>Fe⁰ + hv → Fe⁺ + 2⁻</td>
<td>[43,118–121]</td>
</tr>
<tr>
<td></td>
<td>Fe⁰ + H₂O₂ → Fe⁺ + OH⁺ + OH⁻</td>
<td>[28]</td>
</tr>
<tr>
<td></td>
<td>2H₂O + hv (<698 nm) → HO₂⁺ + 3H⁺</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>Fe²⁺ + HO²⁻ (O₂⁻) → Fe³⁺ + H₂</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>HO²⁻ (O₂⁻) + H → H₂O₂ + H₂</td>
<td>[31]</td>
</tr>
<tr>
<td>2.2. Hybrid photocatalysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoelectro-peroxone (PEP) process</td>
<td>O₂⁻ + 2H⁺ + 2e⁻ → H₂O₂</td>
<td>[139–147]</td>
</tr>
<tr>
<td></td>
<td>2HO₂⁻ + 2O₂⁻ + H₂O → 2OH⁻ + 3O₂⁻ + HO₂⁺ + OH⁻</td>
<td>[33]</td>
</tr>
<tr>
<td></td>
<td>H₂O₂ + hv → 2 '-'OH</td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td>O₂⁻ + H₂O + hv → 2 '-'OH + O₂⁻</td>
<td>[35]</td>
</tr>
</tbody>
</table>

Table 3
Advanced oxidation reaction mechanisms
This is mainly due to the low reduction rate of Fe$^{3+}$ into Fe$^{2+}$ (Eq. (16)) mainly occurred at long reaction time [109]. Application of Fenton process for wastewater treatment is relatively limited due to production of iron sludge [93], and the optimal acidic pH values (pH≈3) [94,95]. However iron precipitation as Fe(OH)$_3$ to production of iron sludge [94, 107, 108] and the optimal acidic pH process for wastewater treatment is relatively limited due to increasing the solubility of iron [96]. Moreover, hydrogen peroxide decomposition is impeded at acidic pH values [97] and the scavenger of inorganic carbon is avoided. Treatment of 1,4-dioxane by Fenton’s reagent was extensively investigated by Ghosh et al. [31], Kim et al. [98], Khan et al. [99]. Complete removal of 1,4-dioxane and 80% reduction of the chemical oxygen demand (COD) was achieved by Merayo et al. [36] using Fenton process at pH value of 2.8, initial H$_2$O$_2$/COD ratio of 4.25 and H$_2$O$_2$/Fe$^{3+}$ ratio of 1. Combination of UV light and Fenton reaction process is namely photo-Fenton process where the photo-recovery of catalytic Fe$^{2+}$ and the photodecarboxylation of the refractory ferric carbonate complexes taken place [100–106]. The main drawback of Fenton and photo-Fenton reactions is the acidic pH (3) and production of iron sludge [94,107,108]. Radiation has a significant contribution for enhancement and activation of the Fe$^{2+}$ for removal of 1,4-dioxane [91]. The degradation efficiency of 1,4-dioxane was increased from 36.3% to 52% in case of adding 2,800 ppm of both H$_2$O$_2$ and FeSO$_4$ in the photo-Fenton oxidation process [107,108] (Table 2). This is mainly due to an increase of HO$^\cdot$ radicals for complete degradation of 1,4-dioxane.

2.2. Heterogeneous processes

Incomplete chemical oxidation of 1,4-dioxane using chlorine (NaClO) and Fenton’s reagent was reported by Klečka and Gonsior [109]. H$_2$O$_2$ and 1,4-dioxane are very weak absorbers of UV light. Approximately 50.8% and 0.15% of the UV light entering the reactor is absorbed by H$_2$O$_2$ and 1,4-dioxane, respectively. Photocatalysis is the combination of UV light and semiconductor catalyst, that is, TiO$_2$, ZnO where minimal production of residues and mild operation conditions for wastewater treatment is attained. The use of zero valent iron (Fe0) instead of Fe$^{2+}$ salts at neutral pH and moderate carbonaceous alkalinity overcome the drawbacks of classical photo-Fenton process. The produced Fe$^{2+}$ remains anchored on the surface of Fe$^{2+}$ microspheres during heterogeneous process avoiding generation of iron sludge. Moreover, UV/TiO$_2$ oxidation of 1,4-dioxane under alkaline pH conditions promoted the hydrolysis of EGDF to EG [68]. The disappearance of oxalic acid indicated that the reaction reached a stage where complete mineralization of the 1,4-dioxane took place [13–36].

2.2.1. Photocatalysis

2.2.1.1. Zero-valent iron (Fe0) microspheres

Zero-valent iron (Fe0) is necessary for microorganisms to carry out the oxidation and degradation of dissolved organics [118]. The free electrons are generated from Fe0 and play a role as a reductant for other materials due to the oxidation-reduction process between Fe$^{2+}$ and Fe$^{3+}$ [119]. Fe0 was used as a reducing agent for the degradation of pollutants [120,121]. Furthermore, there is no problem for light penetration using Fe0 where the turbidity is not increased during the reaction and it is easy to activate it. The degradation of 1,4-dioxane using only zero-valent iron (Fe0), photolysis and combined Fe0 with UV light was investigated by Son et al. [41]. They found that the degradation rate constant (19 × 10$^{-4}$/min), in the combined reaction (5 mg/L Fe0/4.2 mW/cm UV-C light) was higher than those obtained for Fe0-only (4.8 × 10$^{-4}$/min) and photolytic reactions (2.25 × 10$^{-5}$/min), respectively (Table 2). The oxidation process using Fe0 is preferable for pollutants removal using Fenton reaction process (Eqs. (27) and (28)) (Table 3). The removal of 1,4-dioxane in the presence of Fe0-only and combined reactions might be due to the adsorption and oxidation reaction. Adsorption and surface reaction are the two basic mechanisms for 1,4-dioxane removal using Fe0. The bonding energy between Fe0 and 1,4-dioxane decreased by adding UV and the adsorption and desorption degrees of 1,4-dioxane on Fe0 surface changed by UV irradiation. 1,4-dioxane was mostly degraded by OH$^\cdot$ radicals in the combined reaction and was fitted well to the Langmuir–Hinshelwood model, indicating that adsorption as well as the chemical reaction was the main removal mechanism. The transformation of Fe0 into Fe$^{2+}$ and Fe$^{3+}$ was observed in the combined reactions (Fe0 with UV) and the conversion rate of Fe0 was substantially improved by...
However, the removal of 1,4-dioxane using Fe0 is UV source dependent where UV light can be used as the energy source for the oxidation of Fe0 and for generation of H\textsubscript{2}O\textsubscript{2}. The removal efficiency of 1,4-dioxane in combined reaction (Fe0 and UV-C) at reaction time of 4.0 h, was quite higher (34\% at 4.2 mW/cm2 and 89\% at 16.9 mW/cm2) as compared with Fe0 and UV-A (29\% at 2.1 mW/cm2, and 33\% at 12.6 mW/cm2) [43,44] (Table 2). Moreover, Bielski et al. [122], Balmer and Sulzberger, [123], Jeong and Joon [124] showed that H\textsubscript{2}O\textsubscript{2} can be produced by the OH• radical, which is formed from the photolysis of H\textsubscript{2}O at wave length < 698 nm (Eqs. (29)–(31)] (Table 3).

2.2.1.2. Titanium dioxide (TiO\textsubscript{2})

The use of TiO\textsubscript{2} photocatalysts (Fig. 5) for treatment of wastewater containing refractory and non-biodegradable organics has recently gained a great of interest. TiO\textsubscript{2} is stable, harmless, inexpensive and can be easily activated by solar energy and reused [125–127]. No removal of 1,4-dioxane was observed using titanium dioxide under dark conditions [15]. Hill et al. [46] found that 1,4-dioxane is readily oxidized in the presence of oxygen, UVA/UVB and titanium dioxide as catalyst. However, toxic intermediates were produced from photo-oxidation of 1,4-dioxane, that is, ethylene dicarbamate [46,68]. Several researchers [46,68] investigated photocatalytic degradation and reaction pathway of wastewater rich in 1,4-dioxane where 1,2-ethanediol diformate was the main intermediate. However, combination of sonolysis and TiO\textsubscript{2} photocatalysis provided a complete degradation of 1,4-dioxane due to an increase of adsorption capacity of the catalyst for 1,2-ethanediol diformate (EDDF). Degradation of 1,4-dioxane was 77\% at reaction time 5 min using UV/TiO\textsubscript{2} process reaction [45] (Table 2). TiO\textsubscript{2} powder was used for degradation of 1,4-dioxane and needs a filtration after mineralization process which should be avoided [128]. Yamazaki et al. [3] successfully used packed bed reactor supplemented with TiO\textsubscript{2} pellets for photo degradation of 1,4-dioxane. The removal of 1,4-dioxane was due to adsorption followed by photodegradation process. Photocatalytic oxidation of 1,4-dioxane using the TiO\textsubscript{2} sol–gel photo-reactor and UVA light was investigated by Vescovi et al. [15] at pH values of 3 (acidic) and 7 (neutral). 1,4-dioxane was completely removed at both pH values of 3 and 7 at reaction time 60 and 45 min, respectively. However, the P\textsubscript{25} immobilized system was 5.2 times faster than the TiO\textsubscript{2} sol–gel reactor for degradation of 1,4-dioxane due to different characteristics of the titanium dioxide. P\textsubscript{25} (Degussa) is a highly photoactive commercial catalyst enjoying properties (70% anatase, 30% rutile) to maximize photocatalytic oxidation [46,68,129–131] (Table 2). The main advantage of using TiO\textsubscript{2} for photocatalysis process is the ability to reuse the catalyst several times for wastewater treatment [132–134]. However the treatment efficiency using regenerated catalyst is highly fluctuated and depends on the type of contaminants, concentrations and the methods used to recycle the catalyst. Five cycles of the reusability of TiO\textsubscript{2} were examined by Alvarez-Corena et al. [45] for 5 min and showed a decrease in the removal efficacy of 1,4-dioxane using TiO\textsubscript{2}/UV process at increasing the treatment cycles (Table 2). Apparently, the active sites of TiO\textsubscript{2} for production of HO• are decreased due to a reduction of UV penetration resulting in deterioration of the efficiency of degradation of 1,4-dioxane.

![Fig. 5. Titanium oxide (TiO\textsubscript{2}) for degradation of wastewater containing 1,4-dioxane.](image-url)
2.2.1.3. Magnetic TiO\textsubscript{2} photocatalyst (MTPC)

Slurry TiO\textsubscript{2} photocatalysis assisted with UVA and solar light was efficient for degradation of 1,4-dioxane and the removal efficiency was much higher than those achieved by the \(\text{H}_2\text{O}_2/\text{UVC, UVA or UVC radiation processes} \) [30,46,68,129]. This can be attributed to the large surface area of slurry TiO\textsubscript{2}, catalyst which increase the mass transfer between the substrate and the catalyst. However, the drawback of using slurry TiO\textsubscript{2} is recovering of the catalyst which needs solid-liquid separation process. Magnetic photocatalyst (MPC) overcomes such problem where insulated magnetic core particles coated with TiO\textsubscript{2} provides a unique solution to this problem [135]. The application of a magnetic field for separation of the catalyst particles from the treated effluent is possible. However, Coleman et al. [30] found that the removal of 1,4-dioxane was quite low at high loading rate and immobilization of TiO\textsubscript{2} on the reactor walls was more efficient for degradation process (Table 2).

2.2.2. Hybrid photocatalysis processes

2.2.2.1. Immobilized nitrogen and fluorine co-doped titanium dioxide (NF-TiO\textsubscript{2}) composite

In fact classical TiO\textsubscript{2}-based photocatalysis in slurry suspension requires a subsequent filtration step to reuse the catalyst again which increases the treatment cost. The immobilization of the catalyst in combination with solar light is of great interest to enhance the process engineering where separation and recovery of the catalyst from the process stream is feasible [15,30,136–138]. However, catalyst immobilization could restrict the reactant mass transfer [15,30], which represented the main obstacle of the process. Therefore, immobilized nitrogen and fluorine co-doped titanium dioxide (NF-TiO\textsubscript{2}) composite in combination with monodisperse TiO\textsubscript{2} nanoparticles solar photocatalysis was investigated by Barndöök et al. [44] to overcome such phenomena for degradation of 1,4-dioxane. Almost complete removal of 1,4-dioxane (≤100%) was achieved along with 65% of COD and 50% of TOC was removed from industrial wastewater (Table 2). Ethylene glycol diformate, ethylene glycol mono-formate and formic acid were the main reaction intermediates.

2.2.2.2. Photoelectro-peroxone

Combination of individual AOPs (\(\text{O}_3, \text{H}_2\text{O}_2, \text{UV and electrolisis} \)) will have significant synergistic effects for 1,4-dioxane degradation where a higher HO• radicals are generated [139–144] (Table 3). Combination of ozonation, UV photolysis and electrochemical hydrogen peroxyde (H\textsubscript{2}O\textsubscript{2}) generation is PEP process [145]. Ozone/oxygen (O\textsubscript{3}/O\textsubscript{2}) gas mixture is passed into a reactor which is supplied with a UV lamp and equipped with carbon-based cathode to convert \(\text{O}_2 \) into H\textsubscript{2}O\textsubscript{2} (Eq. (32)). The in-situ generated H\textsubscript{2}O\textsubscript{2} will react with the sparged \(\text{O}_3 \) or UV to generate HO• radicals (Eqs. (33) and (34); Table 3) [146,147]. Furthermore, UV photolysis of \(\text{O}_3 \) will generate OH radicals (Eq. (35)) [147]. Shen et al. [148] showed that the combination of ozonation, ultraviolet (UV) and electro-generation of H\textsubscript{2}O\textsubscript{2} provided 33 times of 1,4-dioxane degradation higher than those registered for sole addition of oxidants. This is mainly due to the presence of multiple ways of OH generation in the PEP process which significantly enhanced and improved the degradation of 1,4-dioxane compared with the single processes (\(\text{O}_3 \) UV and electro-generation of H\textsubscript{2}O\textsubscript{2} as well as their dual combinations (UV/\(\text{O}_3 \) and the electro-peroxone [EP] process). The PEP process is a more cost-effective and a safer alternative for removal of 1,4-dioxane as compared with traditional UV/O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2} process due to production of H\textsubscript{2}O\textsubscript{2} is in-situ using \(\text{O}_3 \). This will not only reduce the cost for purchasing external H\textsubscript{2}O\textsubscript{2} reagent but also avoid the risks associated with the storage and handling of this compound.

2.2.2.3. Coagulation-photocatalysis

TiO\textsubscript{2} catalyst is injected into a rapid mixing tank where the coagulants are supplied and subsequent photocatalysis of 1,4-dioxane is occurred in flocculator (slow mixing tank) equipped by UV lamp. The classical coagulation–flocculation process was very poor for removal of 1,4-dioxane [149]. Supplementation of TiO\textsubscript{2}/UV onto a coagulation–flocculation water treatment process completely (100%) removed 1,4-dioxane within 1.0 h [149]. However, the removal efficiency of 1,4-dioxane was substantially dropped (60%) in a continuous flow reactor at contact time and UV dose of 39 min. and 0.35 W/L, respectively. The authors replaced artificial UV by solar UV (0.25 W/L) and found that 100% of 1,4-dioxane was removed within 150 min.

2.2.2.4. Membrane photo-reactor

AOPs usually need further treatment for complete removal of 1,4-dioxane avoiding accumulation of intermediates in the treated effluent. The use of dispersed TiO\textsubscript{2} catalyst is preferable to increase the photocatalytic activity, HO• radicals, mass transfer and reaction rate [150–155]. Stand-alone TiO\textsubscript{2} + UV/MPR combines those advantages where the catalyst could be easily separated and remained in the reaction medium for continuous degradation of 1,4-dioxane [156,157]. The membrane is mainly used for catalyst recovery and producing good effluent quality [152,158]. Photocatalytic membranes provide dual functionalities of photocatalysis and separation process [159–162]. Light radiation onto the membrane surface needs further investigation. Nevertheless, MPRs have several advantages, that is, utilization of suspended catalysis, maximal use of active surface area and control of hydraulic and solids retention times [163–165]. Lee et al. [166] found that the photocatalytic degradation efficiencies of 1,4-dioxane in continuous MPR increased from 74% to 94% at increasing the hydraulic retention time (HRT) from 1.43 to 8.57 h, respectively.

2.2.2.5. Titania (TiO\textsubscript{2}–Cs\textsubscript{2+}H\textsubscript{2}PW\textsubscript{12}O\textsubscript{40}) (Cs\textsubscript{2+}Cs\textsubscript{3+}) hybrid films

Combination of solid surface acidity with TiO\textsubscript{2} will certainly improve the photocatalytic performance of organic pollutants where adsorption of contaminants and decomposition of intermediates will be subsequently increased [48]. Moreover, a high quantum yield is expected due to suppression of recombination between electrons and holes on the surface of TiO\textsubscript{2} [68,128,167–169]. Photocatalytic
decomposition of 1,4-dioxane in water was examined by Maurino et al. [68] and Hill et al. [46] and ethylene glycol diformate (EGDF) was the main intermediate. Decomposition rate of EGDF was quite low due to poor affinity with TiO₂ [128]. Fortunately, once EGDF is removed and/or oxidized, no intermediate with a slow decomposition rate exists in the reaction medium. Therefore, promotion of EGDF decomposition is necessary for complete mineralization of 1,4-dioxane. Nakajima et al. [48] successfully prepared titania-Cs₂H₃PW₁₂O₴₀ hybrid films for removal of 1,4-dioxane and EGDF as well. The holes of titania-Cs₂H₃PW₁₂O₴₀ hybrid films served as adsorption sites for ethylene glycol diformate and the catalyst was very efficient for photocatalytic decomposition of 1,4-dioxane as compared with sole TiO₂ catalyst.

2.2.2.6. Sonolysis and photocatalysis

Ethylene glycol diformate (EGDF) is a main intermediate and the slowest decomposition rate during photocatalysis of 1,4-dioxane using TiO₂. Sun et al. [170] found that the desorption capability of sole TiO₂ for removal of dibenzofurans was improved by surface modification with fluoric acid solution. US + UV + HF–TiO₂ provided higher absorption capability for both 1,4-dioxane and EGDF as compared with pure TiO₂ and subsequently enhanced the photocatalysis decomposition rate. These results were confirmed by Suzuki et al. [171], where the Luis acidity of TiO₂ surface was increased by hydrofluoric acid treatment. Moreover, sonolysis effectively enhanced the catalyst activity probably due to surface activation, aggregation breakage, or the enhancement of mass transport. Sun et al. [170] and Nakajima et al. [128] found that the enhancement of interaction between the surface acid sites on HF–TiO₂ and the π-electrons of the EGDF was occurring on C=O bonding resulting in a higher adsorption capability.

3. Factors affecting photocatalytic oxidation processes

The pH value, catalyst concentration (surface area), initial concentration of the contaminants, UV radiant flux, UV wavelength and type of photocatalyst are the major parameters affecting on the photocatalytic degradation process

3.1. Effect of pH

The photocatalytic oxidation process is occurred at the outer surface of the catalyst [172] where Sharma et al. [173] found that the degradation rate constants as a function of the pH of the water sample was first order reaction. The highest degradation rate constant of 1,4-dioxane using TiO₂/UV was taken place at pH value of 5.0 [45]. However, Coleman et al. [30] reported that 1,4-dioxane degradation on TiO₂ photocatalyst was increased under alkaline and acidic conditions. pH value of 3 was suitable for 1,4-dioxane degradation and completely disappeared at pH level of 11. Moreover, complete degradation of intermediate products are also pH dependent, that is, ethylene diamine tetra acetic acid (EDTA) was degraded at pH value of 11 and EGDF resulted from degradation of 1,4-dioxane is taken place at lower pH values [68,174,175]. Photocatalytic degradation of 1,4-dioxane at pH values of 3,7 and 11 using a P₃o, slurry photo-reactor system and UV-A light was investigated by Vescovi et al. [15]. Complete removal of 1,4-dioxane was occurred at all pH values within 3.0 min. However, the removal of 1,4-dioxane was faster at pH values of 7 and 11. Ethylene glycol diformate was the main intermediate product at pH value of 3 and 7 and was not detected at pH 11. The adsorption capacity, the distribution of hydroxyl radicals and surface charge of titanium dioxide is highly pH dependent [69]. The point of zero charge (pzc) of TiO₂ varied from 6.3 to 6.8 [176]. At neutral pH value of 7, the catalyst have no charge and allowing molecules to be easily reach the catalyst surface resulting a high initial reaction rates. On the other hand, complex electrostatic interactions between the molecules and the catalyst in acidic and alkaline conditions would reduce 1,4-dioxane removal. Nevertheless, the surface of the TiO₂ is highly hydroxylated at alkali pH [177], which would enhance the reaction rate. Probably, competition for hydroxyl radicals by carbonate ions (CO3²⁻) is occurred at pH value of 11 where carbon dioxide, mineral acids and water are formed due to complete mineralization of 1,4-dioxane. Carbonic acid would dissociate into the carbonate ion (CO₃²⁻) at pH 11. Carbonate ions are radical scavengers, reacting with hydroxyl radicals to produce the less effective carbonate radical (CO₃•−) [178]. The presence of carbonate ions in the reaction medium as a radical scavenger slows down the degradation of 1,4-dioxane [178]. Barndöök et al. [42] showed that 1,4-dioxane was completely removed using ozone (O₃) at pH ≥ 9.0 and was quite low (<15%) at pH 7.0 ± 0.1. This indicates that the oxidant O₃ was ruled out for the treatment of 1,4-dioxane at neutral pH value [67,176,179] and the decomposition of O₃ into HO• was negligible [52,62,65] which supposed to react with the substrate [176]. This reaction mechanism of HO• production is initiated by hydroxide anions at high pH values [180,181] and the conversion of O₃• into HO• is occurred as reported earlier in the literature [182,183]. Moreover, the authors showed that the 1,4-dioxane degradation reaction was significantly faster using ozone at pH ≥ 9.0 than those the reaction rate at pH of 7.0 ± 0.1. The photocatalytic degradation and mineralization of EGDF using UV/TiO₂ was superior at pH 5 compared with pH 3 [184]. Nevertheless, the initial photocatalytic degradation and mineralization rates of EDDF using UV/TiO₂/Cu²⁺ at pH 5 were comparable with pH 3. However the photocatalytic degradation and mineralization at pH 5 were quite slow.

3.2. Effect of carbonate and bicarbonate

Photocatalytic degradation rate of 1,4-dioxane at different alkalinity concentrations was examined by Jung et al. [78] in membrane photoreactor (MPR) treating textile wastewater. 1,4-dioxane degradation rate was sharply declined at increasing the alkalinity level up to 200 mg/L as CaCO₃. This can be attributed to consumption of the photocatalytically generated HO• radicals in the presence of bicarbonates (Eq. (36)). The carbonate and bi-carbonate ions were considered HO• scavengers [78,185] (Eqs. (36) and (37)). However, Barndöök et al. [43] found that the presence of carbonates (9.0 ≤ pH ≤ 10.0) enhanced the removal of COD (>90%) as compared with neutral conditions due to the carbonate buffer kept the pH level in the optimal range during the ozonation of 1,4-dioxane.

\[\text{OH} + \text{HO}_3^- \rightarrow \text{H}_2\text{O} + \text{CO}_3^{2-} \]
(36)
The increase in TiO₂ concentration created a high surface area and more active sites available for the oxidation of 1,4-dioxane. Nevertheless, the ability of the UV radiation to reach the surface of TiO₂ is decreased at high concentrations of the catalyst due to the reduction of the effect of UV light and/or scattered by the catalyst [186]. The effect of different concentrations of TiO₂ on the photocatalytic degradation of 1,4-dioxane was investigated by Alvarez-Corena et al. [45]. The catalyst dosage was varied from 0.1 to 2.5 g/L and the degradation rate of 1,4-dioxane was maximized at TiO₂ concentration of 1.5 g/L. TiO₂-photocatalysis achieved complete mineralization of 1,4-dioxane [15,30]; however, the turbidity is increased at high concentrations of TiO₂ [187,188] resulting in a low penetration of light and negatively affected on the quality of treated effluent. Thus, the activation of TiO₂ is necessary. Vescovi et al. [15] found that the P₂₅-Photo-reactor system in slurry for removal of 1,4-dioxane was superior to the immobilized TiO₂ systems due to the higher surface area of the catalyst available in the reaction medium.

3.3. Effect of catalyst surface area

Photocatalytic degradation of 1,4-dioxane on TiO₂ was quite similar using either UV-assisted or solar photocatalysis [43]. 45% of 1,4-dioxane was degraded at 360 kJ/L of either solar or UV radiation. Further improvement of 1,4-dioxane removal (60%) occurred at irradiation in solar simulator (470 kJ/L). This indicates that further removal of 1,4-dioxane is possible at long radiation time. The application of solar simulator above the water surface layer is more effective in a large bulk liquid. The light intensity in the turbid catalyst suspension was only 5% at water depth of 1cm. UV-catalyzed process produced much higher intermediates in terms of EGDF and formic acid. Acetic acid was negligible and the mixture of methoxy acetic and glycolic acids were at a level of 5.6 ± 0.2 mg/L [44]. The P₂₅-immobilized system was more efficient for removal of 1,4-dioxane as compared with TiO₂ sol-gel photo-reactor due to a high photoactivity of the catalyst in the reaction medium [15]. Photocatalytic degradation of 1,4-dioxane at different UV doses of 0–0.35W/L was investigated by Lee and Choo [149]. They found that no 1,4-dioxane degradation was occurred without UV irradiation and the amount of 1,4-dioxane lost by adsorption onto TiO₂ was negligible. 1,4-dioxane degradation was completed at a reaction time of 50 min and UV dosage of 0.35 W/L. Moreover, 1,4-dioxane was completely removed (100%) under artificial and solar UV irradiation at a dosage of <10 kJ/L. Solar radiation with an average UV dose of 0.12 and 0.27 W/L was sufficient for 1,4-dioxane degradation [149]. Likely, solar photocatalysis of 1,4-dioxane by MPR was efficient and provided similar results using artificial UV irradiation [149].

3.4. Effect of UV source

Photocatalytic degradation of 1,4-dioxane on TiO₂ was quite similar using either UV-assisted or solar photocatalysis [43]. 45% of 1,4-dioxane was degraded at 360 kJ/L of either solar or UV radiation. Further improvement of 1,4-dioxane removal (60%) occurred at irradiation in solar simulator (470 kJ/L). This indicates that further removal of 1,4-dioxane is possible at long radiation time. The application of solar simulator above the water surface layer is more effective in a large bulk liquid. The light intensity in the turbid catalyst suspension was only 5% at water depth of 1cm. UV-catalyzed process produced much higher intermediates in terms of EGDF and formic acid. Acetic acid was negligible and the mixture of methoxy acetic and glycolic acids were at a level of 5.6 ± 0.2 mg/L [44]. The P₂₅-immobilized system was more efficient for removal of 1,4-dioxane as compared with TiO₂ sol-gel photo-reactor due to a high photoactivity of the catalyst in the reaction medium [15]. Photocatalytic degradation of 1,4-dioxane at different UV doses of 0–0.35W/L was investigated by Lee and Choo [149]. They found that no 1,4-dioxane degradation was occurred without UV irradiation and the amount of 1,4-dioxane lost by adsorption onto TiO₂ was negligible. 1,4-dioxane degradation was completed at a reaction time of 50 min and UV dosage of 0.35 W/L. Moreover, 1,4-dioxane was completely removed (100%) under artificial and solar UV irradiation at a dosage of <10 kJ/L. Solar radiation with an average UV dose of 0.12 and 0.27 W/L was sufficient for 1,4-dioxane degradation [149]. Likely, solar photocatalysis of 1,4-dioxane by MPR was efficient and provided similar results using artificial UV irradiation [149].

Addition of excessive dosage of 30 ppm H₂O₂ to the P₂₅ photocatalytic system substantially reduced the degradation rate 1.7 times due to a combination of formation of less reactive hydroperoxy radicals (Eq. (41)) and competition of H₂O₂ with the contaminants for conduction band electrons [194]. H₂O₂ consumed hydroxyl radicals (Eqs. (41) and (42)) [195]. Radical–radical recombination occurred (Eq. (42)). Addition of H₂O₂ to the MPC photocatalysis system is quite different where 3 or 5 ppm caused an increase in the degradation rate of 2.5 times for 1,4-dioxane and the addition of 30 ppm H₂O₂ increased the photocatalysis by 3.8 times [30]. This is probably due to the low activity of the MPC compared with P₂₅ for generation of hydroxyl radicals. Moreover, addition of H₂O₂ will increase the removal rate with increasing number of hydroxyl radicals present in the reaction medium (Eq. (39)) [196] and suppress recombination of electron–hole pairs produced at the catalyst surface [194]. The role of H₂O₂ in the photocatalytic degradation of 1,4-dioxane is still unclear and needs further research particularly positive or negative effects depending on the irradiation (i.e., wavelength, intensity), pH values, substrate concentration, catalyst type and the molar ratio of oxidant to contaminant [194]. Those parameters are necessary to be considered for H₂O₂/UV/photocatalyst system. This was not the case for Barndök et al. [42] where the removal of COD and 1,4-dioxane remained unaffected with addition of H₂O₂ to ozonation process at pH ≥ 9.0. This can be attributed to the increase of hydroxide anions resulted from decomposition of organic pollutants at optimum catalyst loading rate and the degradation process was improved. However, others [192,193] reported a negative impact of adding hydrogen peroxide for degradation of some organic contaminants. The effect of the addition of H₂O₂ on the photocatalytic oxidation of 1,4-dioxane using P₂₅ and MPC systems was investigated by Coleman et al. [30]. Addition of 3 ppm H₂O₂ to the P₂₅/UV A slightly increased the degradation rate of 1,4-dioxane. 3 ppm of H₂O₂ was required for photocatalytic degradation of 0.36 ppm 1,4-dioxane using P₂₅ based on the molar ratio of H₂O₂/substrate. Therefore, increasing the H₂O₂ will cause a decrease in reaction rate. H₂O₂ would enhance the reaction by providing additional hydroxyl radicals via trapping of photogenerated electrons (Eqs. (38) and (39)) [194] and/or photolysis of H₂O₂ (Eq. (40)).

\[
\text{TiO}_2\text{-UV} \rightarrow \text{h}^+ + \text{e}^- \quad (38)
\]

\[
\text{H}_2\text{O}_2 \rightarrow \text{OH}^- + \text{OH}^+ \quad (39)
\]

\[
\text{H}_2\text{O}_2 (\text{hv,} \lambda < 300 \text{ nm}) \leftrightarrow 2\text{OH}^+ \quad (40)
\]

However, the addition rate of 1,4-dioxane is slightly decreased with the addition of 5 ppm H₂O₂. This might be due to a slight increase of hydroxyl radicals which will generate less active hydroperoxy radicals (HOO•) (Eq. (41)).

\[
\text{H}_2\text{O}_2 + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HO}_2^- \quad (41)
\]

\[
\text{HO}_2^- + \text{OH}^+ \rightarrow \text{H}_2\text{O} + \text{O}_2 \quad (42)
\]
of O$_3$ into OH$^-$ radical [180,181]. However, the elimination of 1,4-dioxane was improved with supplementation of H$_2$O$_2$ to ozonation process at pH 7.0 ± 0.1. Apparently, the H$_2$O$_2$ contributes to the generation of OH$^-$ from conversion of O$_2$ [182,183] at neutral pH (Eqs. (43) and (44)).

\[
\text{HO}_2^- + \text{O}_3 \rightarrow \text{HO}_2^- + \text{O}_3^- \\
\text{HO}_2^- + \text{O}_3 \rightarrow \text{HO}_2^- + \text{O}_3^-
\]

3.6. Effect of ionic strength

1,4-dioxane degradation is quite slow at high ionic strength of the solution and inhibited at ionic strength exceeding 0.2 M/L [91] due to an increase of radical scavenging chloride ions. Likely, chloride ions have been shown to inhibit persulfate oxidation of trichloroethene (TCE) and methyl tert-butyl ether (MTBE) [197,198]. Moreover, increasing initial calcium chloride concentration caused a drop in pH of the solution due to formation of calcium monohydrate (CaHPO$_4$), resulting in a decrease of buffering capacity. Cloudy precipitate was observed in the higher CaCl$_2$ concentration solutions (7 and 70 mM/L) [91].

3.7. Effect of applying voltage

Photocatalytic decomposition of 1,4-dioxane initially produced ethylene glycol diformate (EGDF) [46,68] which represented the slowest degradable intermediate products resulted from the reaction. Accumulation of EGDF in the reaction medium causes a severe problem for degradation of 1,4-dioxane. Therefore, degradation of EGDF represented the most step for complete removal of 1,4-dioxane using photocatalyst. Moreover, the removal of EGDF will facilitate and enhance the subsequent reaction processes. Combination of sonolysis and photocatalysis accelerate the degradation of EGDF [128]. Yanagida et al. [199] found that photocatalytic degradation rate of 1,4-dioxane depends on applying voltage where ethylene glycol diformate (EGDF) and 1,4-dioxane exhibited inverse voltage dependence. Applying voltage enhanced photocatalysis of 1,4-dioxane and surprisingly suppressed EGDF formation [199,200].

3.8. Effect of catalyst loadings

1 g/L TiO$_2$ loading is the optimum catalyst loading for the removal of 1,4-dioxane using P$_{Au}$ photocatalyst [30]. However, the removal rate of 1,4-dioxane was slightly increased from 2.2 and 2.4 μgC/min at increasing the catalyst loading from 0.1 to 1 g/L, respectively. 1 g/L of P$_{Au}$ TiO$_2$ was the optimum loading for the degradation of organic substances in contaminated water [30,201]. Mehrvar et al. [129] found that 1.5 g/L was the optimum loading for removal of high concentration of 1,4-dioxane (27.8 ppm). This was not the case for MTPC where 0.1 g/L was the optimum and provided similar removal efficiency of 1,4-dioxane using 1 g/L of P$_{Au}$ TiO$_2$. The removal rate of 1,4-dioxane was dropped from 0.24 to 0.18 μgC/min at increasing the MTPC catalyst loading from 0.1 to 1.0 g/L, respectively. This was attributed to the particle size and the light scattering characteristics of the photocatalysts [30].

5 g/L TiO$_2$ catalyst was required to maximize 1,4-dioxane degradation in MPR. Lee et al. [166] found that the 1,4-dioxane degradation rate was increased at increasing TiO$_2$ dosage from 0.1 to 1.0 g/L. 100% of 1,4-dioxane was removed at contact time and TiO$_2$ dosage of 50 min and 1.0 g/L, respectively. Moreover, photocatalytic intermediates were not detected in the reaction medium.

3.9. Effect of turbidity

Water turbidity would affect photocatalytic reactions due to light scattering [202,203]. The effect of feed-water turbidity on the degradation of 1,4-dioxane was examined by Lee and Choo [149] for a range of 0.1 to 115 NTU. The authors concluded that there is no effect of the turbidity on the degradation efficiency of 1,4-dioxane in this range.

3.10. Effect of dissolved oxygen (DO)

DO as an electron acceptor in the photocatalytic reaction medium particularly using TiO$_2$ would play a necessary role to avoid the recombination of photo-generated charge carriers. The photocatalytic degradation of 2,3-dichlorophenol was improved in the presence of DO [204] dichloroacetic acid [205], 2-chlorobiphenyl [206], etc. Oxygen reacts only slowly with the electrons and the electron transfer rate from TiO$_2$ to oxygen can control photocatalysis process [207]. Youn et al. [208] found that the photodegradation of 1,4-dioxane by TiO$_2$ was substantially increased at increasing the DO levels in the reaction medium and the 1,4-dioxane was almost completely degraded at contact time of 8 h under high DO conditions. Similar results were observed for photodegradations of organic contaminants by TiO$_2$ [204–209]. This promoting effect of the DO on photo-degradation of 1,4-dioxane is mainly due to the role of DO as an electron scavenger which certainly assists to reduce electron–hole recombination.

3.11. Effect of nanoparticles addition

The recombination of photogenerated electron–hole pairs needs to be suppressed to enhance the photocatalytic activity of TiO$_2$. Noble metals, that is, Au (1.2 wt.%) nanoparticles were incorporated with TiO$_2$ to efficiently separate charge carriers created in/on catalyst [208] promoting the photocatalytic activity of the catalyst. Nano-sized Pt and Ag particles loaded on TiO$_2$ were applied for photodegradation of oxalic acid and the photocatalytic activity was increased as compared with only TiO$_2$ [210]. Photocatalytic degradation of lignin was increased six times in the presence of combination of Pt/TiO$_2$ [211]. The Au-capped TiO$_2$ nanoparticles increased the photocatalytic efficiency of thiocyanate by a value of 40% [212]. TiO$_2$ modified with nano-sized Au provided a higher activity for the mineralization of oxalic acid than those observed for a commercially available TiO$_2$ [213]. Au nanoparticles incorporated with TiO$_2$ enhanced the photocatalysis process at low loading of nanoparticles. This was not the case for high loading of the catalyst (0.35% Au) [24,25] due to the inhibition of adsorption of 1,4-dioxane or hydroxyl species on TiO$_2$ surface.
3.12. Effect of copper (II) ions

Heterogeneous photocatalysis using TiO₂ represents the most attractive process for degradation of 1,4-dioxane where it is effective for a wide range of pH values. Nevertheless, the most drawback of the process is that the photogenerated electron–hole pairs can recombine resulting in low quantum efficiency \([214,215]\). Transition metal ions, that is, Cu\(^{2+}\), Fe\(^{3+}\) or Mn\(^{2+}\) have the capability to trap the photogenerated electron (Eq. (45)) \([216–221]\) and subsequently improve the efficiency of TiO₂ catalyst.

\[
\text{Me}^{n+} + e^{-} \rightarrow \text{Me}^{(n-1)+} \tag{45}
\]

Lam et al. \([222]\) found that the addition of Cu\(^{2+}\) enhanced the photocatalytic degradation and mineralization of 1,4-dioxane at pH values ranging from 3 to 5. This was due to the involvement of Cu\(^{2+}\) in the ligand-to-metal charge transfer process, where Cu\(^{2+}\) formed complexes with 1,4-dioxane and/or intermediate products resulting in an alternative oxidation reaction route. Moreover, Cu\(^{2+}\) increased the oxidation of EGDF at pH 3 resulting in a complete mineralization of 1,4-dioxane. Cu remained in dissolved state at pH 3 and the total dissolved Cu concentration dropped at pH 5 resulting in retardation in the photocatalytic oxidation of EGDF due to the formation of insoluble Cu species. The presence of the insoluble Cu species negatively affects light penetration and subsequently reduces the availability of dissolved Cu\(^{2+}\) to interact with the intermediate product of EGDF in the reaction medium.

4. Fate of 1,4-dioxane and intermediate by-products

AOPs were used for the removal of 1,4-dioxane from water/wastewater. However, several intermediates, that is, aldehydes, organic acids, mono- and diformate esters of 1,2-ethanediol are generated due to the oxidation of the 1,4-dioxane. The formation and degradation of intermediates are mainly affected by catalyst type, dosage, pH values, illumination (irradiation) time, etc.

\[
\cdot \text{OH radicals attack} \quad 1,4\text{-dioxane molecules resulting in H}^+ \text{ abstraction to form} \quad 1,4\text{-dioxanyl radical which is further oxidized by available dissolved oxygen to form peroxyl radical (Fig. 6) \([223]\). The latter undergoes bimolecular decay to form tetroxide intermediates \([223,224]\). Two oxyl radicals and O\(_2\) are formed due to the decomposition of tetroxide. The termination reactions of peroxyl radical generate the tetroxide precursor of 1,4-dioxan a-oxyl radical, which is finally produced}
\]

![Fig. 6. Main reaction mechanism of homogenous, heterogeneous and catalytic oxidation of 1,4-dioxane.](image)
releasing oxygen [13,37,98]. 1,4-dioxan a-oxyl radical ring is opened due to splitting of the ΔC–C bond resulting in linear tetroxide [223–225]. Two further reactions for linear tetroxide occurred, that is, (1) the electro-cyclic process where ethylene glycol diformate (EGDF) is produced [13,37], or (2) the decomposition into two alkoxyl radicals and oxygen followed by Regular-fragmentation and H abstraction to form ethylene glycol monoformate (EGMF) and formic acid [13,36,43,226] (Fig. 7). Likely, Barndõk et al. [42] found that EGDF was the major primary intermediate in TiO₂ photocatalysis and photo-Fenton process. However, in heterogenous photo-Fenton process using Fe⁰, scheme 3 was proposed by Barndõk et al. [42,43] where an alternative degradation mechanism of 1,4-dioxane via methoxyacetic and acetic acid occurred. Beckett and Hua [37] found that glycolic acid and formic acid resulted from the degradation of methoxyacetic acid. Finally, ethylene glycol and formic acid are formed due to acid hydrolysis of mono- and diformate ethylene glycol [227] (Fig. 7). Ethylene glycol may be degraded into glycolic acid followed by oxalic acid by deformulation [228]. Oxalic acid appeared as oxalate anion under acidic pH values resulting in the reaction pathway in Fig. 8. 1,4-dioxan-a-oxyl radical is the main primary intermediate of the degradation of 1,4-dioxane and generated due to formation of tetroxide (Fig. 6) [13,36,226]. The a-oxyl radical is degraded either through ΔC–C splitting at the a-C position (Fig. 8) or via an intramolecular reaction (H abstraction from the a-C position) followed by fragmentation (Fig. 8) [13]. 1,4-dioxan-a-oxyl radical is degraded through an intramolecular reaction to produce formaldehyde and formic acid along with the carbon-centered radical (Fig. 8). The formed radicals are reduced into methoxy-acetaldehyde and subsequently oxidized to methoxy acetic and acetic acid. β-scission yielding acetaldehyde and consequently, acetic acid is another alternative intermediates [10,35,36]. Barndõk et al. [43] found that acetic acid was detected using Fe⁰/H₂O₂/UV. The conversion of acetic acid yields free-radical-induced degradation by-products such as formaldehyde, glycolic and glyoxylic acids. CO₂ is produced in that stage of decomposition indicating that some mineralization occurred [223,228,229]. The EGDF was the main intermediate by product and the formation of methoxyacetic acid was minor for ozone oxidation of 1,4-dioxane at acidic conditions [57]. Stefan and Bolton [13] found that 90% of the initial concentration of 1,4-dioxane was depleted using O₃/H₂O₂/UV at the 1st 5 min of irradiation and 1,2-ethanediol mono and diformate esters, formic acid and methoxyacetic acid were detected in the treated effluent. The decay of EGDH is pH and reaction type dependent which is rapidly hydrolyzed into ethylene glycol (Fig. 9) [8] using Fe⁰-based photo-Fenton at pH₀ of 8.5 and classical Fenton process at acidic condition (pH₀ 2.8) [36]. Similar pathway of acid-catalyzed hydrolysis was occurred in the Fe²⁺/H₂O₂/UV process [43]. Ethylene glycol is subsequently degraded and hydrolyzed into glycolic acid through formation of glycol aldehyde [36] and some of formic acid was detected as well. The hydrolysis of EGDG into ethylene glycol was negligible at pH₀ value of 5.7 in UV/TiO₂ process [43]. At a high reaction rate with •OH, formic acid was mineralized into CO₂ [13,223,230]. Glycolic acid decomposes into glyoxylic acid which is further oxidized to oxalic acid [36,223,228]. Oxalic acid is the last intermediate for mineralization of organics [42,13,223]. Glyoxylic acid decomposes into oxalic acid, which is easily converted
into water and CO₂ [223,228]. Lam et al. [231] found that the photocatalytic oxidation of 1,4-dioxane at pH 3 occurred in a two-step reaction controlled by the degradation of EGDF and at pH value of 5, more complex processes were observed. Residual values of EGDF were detected at pH of 3 and 7. However, the degradation of EGDF was slightly faster at pH 7 than at pH value of 3. The EGDF was completely removed at pH value of 11 [15]. Maurino et al. [68] reported that EGDF was not detected at pH value of 11 and was quickly hydrolyzed into ethylene glycol and formate (>95% in 90 s). Small quantities of ethylene glycol, and relatively high amounts of formaldehyde, glycolaldehyde, formic and glycolic acids were detected at pH 5.5. Mehrvar et al. [174] identified EGDF, formaldehyde and formic, glycolic and
oxalic acids as intermediates during the photocatalytic oxidation of 1,4-dioxane at pH 4. Complete mineralization of 1,4-dioxane in aqueous solution was achieved using light (A > 300 nm) and TiO₂. The degradation of 1,4-dioxane using ozonation process at pH > 9 occurred faster via the formation of ethylene glycol. This was not the case for the decomposition of 1,4-dioxane under acidic conditions (pH < 5.7) where the formation of ethylene glycol diformate was occurred and its degradation was quite slow [43].

5. Biodegradation processes

Conventional physicochemical treatment processes such as coagulation and adsorption are not efficient for removal of 1,4-dioxane from industrial wastewater due to its high solubility. AOPs are effective methods for degradation of 1,4-dioxane [13,232]. However, AOP consumes considerably high quantities of chemicals and energy which should be avoided to reduce the operating costs particularly for low income countries. Moreover, 1,4-dioxane was considered non-biodegradable by microorganisms, although some recent investigations have shown its biodegradation under specific conditions. Therefore, biological degradation processes of 1,4-dioxane are very limited in the literature. The indigenous microorganisms were not typically accounted for degradation of 1,4-dioxane [233,234]. However, biodegradation of 1,4-dioxane was taken place in pure [21–23] and mixed cultures bacteria [24]. Furthermore, Mahendra and Alvarez-Cohen [235] reported that the biodegradation of 1,4-dioxane by different bacteria strongly depends on the community structure and the presence of an extra carbon source. Pure cultures bacteria (Mycobacterium sp. and Pseudomonas sp. [22,235,236] and a fungal strain [237]) was used for biodegradation of 1,4-dioxane. Likely, monooxygenase-expressing strains were also efficient for removal of 1,4-dioxane [238,239]. Nevertheless, incomplete degradation of 1,4-dioxane was mainly due to insufficient enzymes [240]. A pure culture of Mycobacterium vaccae JOBS was shown to partially degrade 1,4-dioxane, but the bacterial growth was quite limited [22]. The biodegradation of 1,4-dioxane using Rhodococcus strain [23] and bacterium (strain CB1190) [21] was quite satisfactory for mineralization of 1,4-dioxane. Recently Vainberg et al. [25] identified three new pure bacterial cultures, that is, strain ENV425 has the capability to degrade 1,4-dioxane after growth on either THF or propane, and it was efficient for degradation of the non-symmetric alkyldiether methyl-tert-butyl ether [13]. Strains ENV478 and ENV473 efficiently degraded 1,4-dioxane after growth on THF. However, strain ENV478 had the unique ability for degradation of 1,4-dioxane after growth on succrose, and iso-propanol. The growth of ENV478 on THF was enhanced in the presence of 1,4-dioxane, suggesting that the strain obtains metabolic carbon and energy source from 1,4-dioxane. Mixed cultures bacteria were able to degrade 1,4-dioxane, but only in the presence of the co-substrate, that is, tetrahydrofuran (THF) [21]. Currently, there have been few investigations on the biodegradation of 1,4-dioxane (Table 4). Aerobic biodegradation of 1,4-dioxane was facilitated with mixed cultures, amended with industrially oriented activated sludge [22]. The biodegradability of 1,4-dioxane in the obligate presence of tetrahydrofuran (THF) was investigated using a continuous-flow attached-growth reactor packed with ceramic saddles [236]. Han et al. [241] found that up-flow biological aerated filter is efficient for removal of 1,4-dioxane at low initial concentrations.

5.1. Factors affecting biodegradation process

5.1.1. Effect of pH value

Isolated bacteria had the capability to degrade 1,4-dioxane at pH values ranging from 3 to 10 [242]. However, the acidic pH values could suppress the degradation efficiency of specific strains. The specific 1,4-dioxane degradation rate at pH value of 5.0 was nearly half of those achieved at pH level of 7.5 using strain D17 [243]. The highest degradation efficiencies were registered at pH value of 6–8 [243–245]. Strain N23 was superior to previously isolated bacteria under acidic conditions and provided >80% removal of 1,4-dioxane at pH value of 3.8 [242]. Surprisingly, efficiency of strain N23 was not largely reduced under acidic condition where 30% of the 1,4-dioxane was removed at pH value of 3.1.

5.1.2. Effect of temperature

The effects of temperature on the removal efficiency of 1,4-dioxane using strain N23 were assessed by Yamamoto et al. [242]. The highest 1,4-dioxane-degrading ability of 13.5 mg-1,4-dioxane/Lh was taken place at a temperature of 25°C–35°C, and was kept at a level of 76% at a temperature of 20°C. The degradation efficiency of 1,4-dioxane was fully stopped at temperature exceeding 40°C using strain N23. Likely, Isaka et al. [246] found that the efficiency of polyethylene glycol gel carriers entrapping Afipia sp. D1 was adversely affected at different temperatures. 1,4-dioxane removal efficiency increased at increasing the temperature from 6.9°C to 31.7°C. The removal efficiency was highly deteriorated at a temperature exceeding 31.7°C and was 26% at low temperature of 6.9°C.

5.1.3. Effect of substrate concentration

The ability of strain N23 was efficient to utilize various substrates for their growth, that is, 1,4-dioxane, acetic acid, 1,4-butanediol, 1-butanol and glucose), as well as intermediates of 1,4-dioxane degradation (ethylene glycol, glycolic acid and glyoxylic acid [247], 1,4-dioxane analogue (tetrahydrofuran), and diethylene glycol. The growth of strain N23 was optimized in the presence of 1,4-butadiol. Glyoxal (a 1,4-dioxane degradation intermediate [247]), phenol and tri-ethylene glycol (a trimer of ethylene glycol) were not utilized for growth using strain N23. The growth of strain DT8 was inhibited at 1,4-dioxane concentration of >300 mg/L [248]. This is not the case for strain N23 where it was capable of degrading 1,4-dioxane at influent concentration of 1,000 mg/L [246].

5.1.4. Effect of co-substrate addition

The presence of other carbon sources in the reaction medium could enhance 1,4-dioxane degradation. Mycobacterium vaccae JOBS and Rhodococcus ruber ENV425 degraded 1,4-dioxane in the presence of alkane [249]. The bacteria
utilize the alkane as energy source for enzymes production. The alkane oxidation enzymes (monooxygenase) are produced and mainly used for degradation of 1,4-dioxane [250]. Biodegradation of 1,4-dioxane using bacterial strains under co-metabolic conditions was earlier studied [251,252] and the performance was satisfactory accepted. Nevertheless, it is difficult to cultivate those bacteria in wastewater treatment systems without metabolic substrates, that is, tetrahydrofuran or toluene. Supplementation of considerable amounts of chemicals is required as a metabolic substrate for bacterial growth. Furthermore, the metabolic substrate should be removed from the wastewater to decrease the chemical oxygen demand. This is not the case for Afipia sp. D1 where no additional chemicals are required for removal of 1,4-dioxane. Moreover, the concentration of intermediates in the treated effluent is quite low using Afipia sp. D1 wastewater [246]. Afipia sp. D1 produces a relatively higher biomass yield than those reported for Pseudonocardia dioxygenans CB1190 [251]. The estimated μ_{max} of 1.8/d was observed for Afipia sp. D1 which gave an indication for high growth rate and biomass yield to enhance the start up period. Vainberg et al. [252] found that the biodegradation of 1,4-dioxane using Pseudonocardia sp. strain ENV478 resulted in an accumulation of 2-hydroxyethoxy acetic acid in the treated effluent. The efficiency of Afipia sp. D1 for removal of 1,4-dioxane was stable and efficient in the presence of the other organic and inorganic pollutants in the wastewater [246]. These results are confirmed by Sei et al. [253] where 1,4-dioxane degradation using strain D1 was not deteriorated in the presence of easily biodegradable compounds such as ethylene glycol at a level of 3,000 mg/L. Isaka et al. [246] found that no significant adverse effect on 1,4-dioxane removal performance by strain D1 entrapped in gel carrier at relatively low nutrients, (20 mg NH$_4$–N/L and 5.0 mg PO$_4$–P/L). Presumably, 1,4-dioxane removal performance by strain D1 would not be affected in the presence of other organic substrates and low concentration of nutrients. Monooxygenase enzyme plays a key role for 1,4-dioxane degradation using bacterial strains where hydroxylation of the 1,4-dioxane ring is occurred [251,252,254]. Several species of monooxygenase-producing bacteria, for example, Pseudomonas putida mt-2, Methylosinus trichosporium OB3b, Mycobacterium vaccae LOB5 and Pseudomonas mendocina KR, are known to co-metabolically degrade 1,4-dioxane in the presence of methane, propane, THF or toluene. Interestingly, the microbes sequenced into six groups are known to produce soluble methane monooxygenase [252]. Moreover, strains Betaproteobacterium G5G6, Azarcus sp. EbN1 and Propionivibrio limicola, categorized into group 5, can degrade toluene. However, these specified microbes still need to be investigated to see if they are able to directly degrade 1,4-dioxane under different experimental conditions. Sei et al. [253] found that the concentration

<table>
<thead>
<tr>
<th>Technology</th>
<th>Operating conditions</th>
<th>Reactor efficiency</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated sludge (electrolytic respirometry process)</td>
<td>Adaptation period of 32 d</td>
<td>150 mg/L of 1,4-dioxane was biodegraded to below detection limit</td>
<td>[253]</td>
</tr>
<tr>
<td>Activated sludge</td>
<td>Incubation period of 14 d (co-metabolic degradation with 100 mg/L of tetrahydrofuran (THF))</td>
<td>69% removal efficiency at initial concentration of 1,4-dioxane (100 mg/L)</td>
<td></td>
</tr>
<tr>
<td>Attached and attached-growth reactor packed with ceramic saddles</td>
<td>–</td>
<td>–</td>
<td>[19,236]</td>
</tr>
<tr>
<td>Up-flow anaerobic separation gases reactor</td>
<td>–</td>
<td>1,4-dioxane < 1 mg/L at low initial concentrations</td>
<td>[8]</td>
</tr>
<tr>
<td>Auto- aerated down-flow hanging luffa (ADHL) system</td>
<td>–</td>
<td>1,4-dioxane < 1 mg/L at low initial concentrations</td>
<td>[1]</td>
</tr>
<tr>
<td>Rotating biological contractor</td>
<td>–</td>
<td>Efficient at relatively low 1,4-dioxane concentrations of 1–30 mg/L</td>
<td>[24]</td>
</tr>
<tr>
<td>Trickling filter</td>
<td>Module was operated for over 1 year</td>
<td>95%–98% (initial substrate concentration of 0.2–25 mg 1,4-dioxane/L)</td>
<td>[20,35]</td>
</tr>
<tr>
<td>Up-flow biological aerated filter</td>
<td>–</td>
<td>Efficient for removal of 1,4-dioxane at low initial concentrations</td>
<td>[241]</td>
</tr>
<tr>
<td>Polyethylene glycol gel carriers entrapping Afipia sp. D1</td>
<td>–</td>
<td>Removal efficiency of 1,4-dioxane was highly deteriorated at a temperature exceeding 31.7°C and was 26% at low temperature of 6.9°C</td>
<td>[246]</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>The residual values of 1,4-dioxane in the treated effluent was 3.6 mg/L at influent concentration of 400 mg/L resulting removal efficiency of 99%</td>
<td></td>
</tr>
</tbody>
</table>

of 1,4-dioxane (100 mg/L) was reduced by a value of 69% using activated sludge within 14 d via co-metabolic degradation with 100 mg/L of tetrahydrofuran (THF).

5.1.5. Effect of immobilization of pure culture bacteria on the carriers entrapping

Afipia sp. D1 is efficient and has the capability of using 1,4-dioxane as a sole energy and carbon source. Sei et al. [253] found that *Afipia* sp. D1 is very effective for 1,4-dioxane biodegradation as compared with previously reported strains. Isaka et al. [246] successfully applied gel entrapment technology to immobilize aerobic, anoxic and anaerobic bacteria for wastewater treatment. The most advantage of gel carrier is easily moved and separated from wastewater using a screen. The immobilized bacteria cannot be washed out from the reactor creating long biomass retention times for strain D1 to degrade 1,4-dioxane at short HRT. Strain D1 was entrapped/immobilized in a polyethylene glycol gel carrier for removal of 1,4-dioxane from wastewater [246]. The residual values of 1,4-dioxane in the treated effluent was 3.6 mg/L at influent concentration of 400 mg/L resulting in a removal efficiency of 99%. The maximum removal rate of 1,4-dioxane was 0.67 kg dioxane/m³.d at an HRT of 16 h. This was mainly due to an increase in the initial cell concentration in the gel carrier from 6.1 × 10⁵ CFU/mL-carrier to 8.8 × 10⁹ CFU/mL carrier.

5.2. Biodegradation pathway

The microbial degradation of 1,4-dioxane under co-metabolic conditions was common where other organic substrates provided a carbon and energy source for bacterial growth [22,25,255–258]. Recently, some microorganisms have been identified to utilize 1,4-dioxane as a sole source of carbon and energy [21,23,255,256]. Earlier investigations of biological 1,4-dioxane transformation were initially performed as part of toxicological studies where hydroxyethoxymethacetic acid (HEAA) and 1,4-dioxane-2-one was the major metabolites by-products in humans [259] and rats [260], respectively. The pathways of 1,4-dioxane biotransformation were investigated using metabolizing and cometabolizing bacteria and fungi to understand the fate of the compound in the environment. The hydroxylation of the 1,4-dioxane ring by monoxygenase enzymes is the first step in the biodegradation process [25,255,257] based on toxicological studies (Fig. 10). The hydroxylated metabolite undergoes uncharacterized biotic or abiotic processing resulting in the opening of the ring structure. Two metabolites, 1,4-dioxane-2-ol and ethylene glycol, were detected using GC-MS analysis in *Mycobacterium* sp. strain PH-06, which was grown on dioxane and deuterated dioxane [261]. 2-Hydroxyethoxymethacetic acid (2HEAA) was detected for degradation of 14C-labeled dioxane using cometabolizing bacterium *Pseudonocardia strain ENV478* [24]. Likely, 1,4-dioxane metabolites was performed using *Pseudonocardia dioxanivorans* strain CB1190 (24) and *Pseudonocardia dioxanivorans* strain CB1190 (24) and 1,2-dihydroxyethoxymethacetic acid, 2-hydroxyethoxy-2-hydroxyacetic acid, glycolaldehyde, glyoxylic acid, and CO₂ were detected and identified by Mahendra et al. [262]. Oxalic acid was identified as the core of central metabolism [262]. *Mycobacterium sp. PH-06* was isolated by Kim et al. [263] from contaminated river sediment to metabolize 1,4-dioxane resulting in 1,4-dioxane-2-ol and ethylene glycol as major metabolite by-products.

Fig. 10. Biodegradation pathways and enzymes involved in 1,4-dioxane metabolism (adapted from Mahendra et al. [26] and Grostern et al.[247]).
Pseudonocardia carboxydovorans RM-31 and **Xanthobacter flavus** DT8 were utilized to degrade 1,4-dioxane where the authors found that monoxygenase enzyme was not the initiation enzyme in X. flavus DT8 suggesting a different 1,4-dioxane biodegradation mechanism [264]. The bacterial strain of *Pseudonocardia benzenivorans* B5 was able to grow on 1,4-dioxane [265]. *Cordyceps sinensis* fungal strain was reported by Nakamiya et al. [266] to metabolize 1,4-dioxane and produce ethylene glycol, glycolic acid and oxalic acid. Biodegradation of 1,4-dioxane at concentration of 80 mg/L was investigated by Gedalanga et al. [267] where microbial community in activated sludge was able to grow on 1,4-dioxane, that is, CB1190-like bacteria.

6. Future outlook

- Although AOPs are efficient for removal of 1,4-dioxane, potential limitations of the process need to be carefully addressed before implementing the technology at full scale, that is, aldehydes and organic acids formations. Moreover, free hydroxyl radical scavengers (carbonate and bicarbonate) would inhibit contaminant destruction efficiency, which should be addressed.
- Little or no research has been conducted to evaluate 1,4-dioxane degradation under redox conditions (iron reducing, sulfate reducing and methanogenic), which are common in aquifers.
- Studying the effect of co-substrate additives, that is, volatile fatty acids on the degradation of high concentration of 1,4-dioxane using anaerobes.
- Phytoremediation of wastewater containing high concentrations of 1,4-dioxane is a relatively new approach.

Acknowledgment

The author is very grateful for science technology development fund (STDF), project no. 26271 for partially funding this work.

References

[30] DoD SERDP, Evaluation of branched hydrocarbons as stimulants for in situ cometabolic biodegradation of 1,4-dioxane and its associated co-contaminants, 2013b. Available at: www.serdp.org/Program-Areas/Environmental-Restoration/

