Eriochrome Black T removal from water solution by modified LaNiO$_3$: kinetic, isotherm, and thermodynamic studies

Farhad Salimi*, Sarie Pire, Changiz Karami

*Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran, emails: f.salimi@iauksh.ac.ir (F. Salimi), sariepire@yahoo.com (S. Pire)

Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, email: changiz.karami@gmail.com

Received 15 March 2019; Accepted 8 September 2019

ABSTRACT

In this study, LaNiO$_3$ (LNO) and modified LaNiO$_3$ (MLNO) nanoparticles with perovskite structures were synthesized using the citrate sol–gel method and used for removal of the Eriochrome Black T (EBT) dye from water. The increase of the surface area on the LNO was created by enhancing the holes on its surface. The transmission electron microscopy, scanning electronic microscopy, the N$_2$ adsorption (Brunauer–Emmett–Teller specific surface area) and pore size distribution analysis and X-ray diffraction spectroscopy were used to characterize the prepared nanoparticles. The results of the surface area analysis indicated that the number of MLNO samples increased through the method applied in this paper. The effects of adsorbent dosage, pH, and contact time were investigated and 25.90 and 19.27 mg/g of LNO and MLNO were respectively obtained for the adsorption of the maximum EBT. The optimum conditions for 100 mg/L EBT solution were pH of 5 and 0.3 g/L LNO and MLNO. Freundlich isotherm and pseudo-second-order model better predicted the adsorption isotherm and adsorption kinetics, respectively. Moreover, thermodynamic parameters have been measured and results indicate that the adsorption process was spontaneous and exothermic for LNO and spontaneous and endothermic for MLNO.

Keywords: Adsorption; LaNiO$_3$ perovskite; Eriochrome Black T; Adsorption behavior; Thermodynamic parameters

1. Introduction

Annually, about one million tons of dyes are produced in the world, of which 70% in the market are azo dyes that are the largest class of the commercial dyes [1]. A reactive azo dye contains one or more azo bonds (–N=N–) that act as chromophores in the molecular structure [2]. Also, it is the largest group of organic dyes, which is challenging to degrade even at low concentrations due to its high resistance to light, heat, water, and chemical, and microbial attacks [3]. Therefore, it is highly essential to remove azo dyes from wastewater effluents before discharge into water bodies.

Today, the use of adsorbents have been increased to remove the dyes from wastewater [4–8]. A wide range of materials has been reported for dye removal, including zeolite, clay, activated carbon, and polymer. However, there are disadvantages associated with such materials. Thus, the development of new materials with good adsorption capacity, large surface area, and small diffusion resistance characteristics is still on demand [9]. Nanotechnology, as a novel method, offers a class of promising adsorbents that the shape of nanoparticles is essential because a wide range of the physical and chemical properties of these particles are entirely

* Corresponding author.
dependent on their sizes and morphologies. For example, optical or catalytic properties [10], CdTe tetrapods [11] and CuO coated with Cu nanoparticles [12] depend on their morphologies are different.

Many techniques have been introduced to remove dyes from wastewaters. Biological, oxidation or ozonation [13,14], flocculation [15], membrane separation [16] and adsorption [17–19]. Among several abovementioned techniques for the removal of dyes from the water, adsorption methods are very efficient, economical, and widely in use for wastewater treatment [20]. Nanostructures, which are applied as novel materials for the removal of dyes, offer a class of promising adsorbents that are ultra-fine and have a large surface area.

The structure of perovskites (ABO₃) is the combination of rare earth elements (A) and transition metals (B). By changing these elements, a wide range of these structures can be synthesized. The rare-earth ion at the A-site supplies the thermal resistance of perovskites and the transition metal cation at the B-site attributes mainly to the catalytic activity. LaNiO₃ perovskite has been used for many targets such as electrode materials and ferroelectrics because of its magnetic and conductive thin films [21]. The use of LaNiO₃ as a dyes removal in recent years has been of great interest to researchers [22], methanol [23], and glycerol steam reforming to generate energy by producing a hydrogen-rich gas stream. The use of LaNiO₃ as a dyes removal in recent years has been of great interest to researchers [24,25]. These applications include the removal of methyl orange by La₅Ni₃O₁₀ [26], degradation of 4-chlorophenol in the presence of La₅Ni₃O₁₀ [26], oxidation of phenol by using LaBO₃ (B: Cu, Fe, Mn, Co, Ni) [27], decolorization of Rhodamine B by LaMO₃ (M: Co, Cu, Fe and Ni) [28] and removal of reactive black dye by LaNiO₃ perovskite [29].

In continuation of our previous research on adsorption of dyes from aqueous solution [30–35]. The purpose of this research is the synthesis and characterization of LNO and LNO modified with Zn(NO₃)₂, and comparing adsorption of Eriochrome Black T (EBT) dyes in different parameters such as contact time, pH, and adsorbent dosage. Adsorption and kinetic isotherms and also thermodynamic models were considered to obtain the useful parameters to dye adsorption processes.

2. Materials and methods

Many materials including of Citric acid (99% C₆H₈O₇, Merck, Germany), ethylene glycol (99% (C₂H₂(OH)₂, Merck, Germany) nickel nitrate salt (99% (Ni(NO₃)₂·6H₂O, Merck, Germany), lanthanum nitrate salt (99% La(NO₃)₃·6H₂O, Merck, Germany), zinc nitrate salt (Zn(NO₃)₂·6H₂O, 99%, Merck) and ammonium chloride (NH₄Cl, 99%, Merck, Germany) were used. The EBT, high quality, was prepared by Merck Company.

2.1. Instruments

Perovskite-structure, particle size and phase purity of the samples were investigated by X-ray diffraction (XRD, PHILIPS PW 1840, k = 1.54056 Å). Typically, the peaks of the adsorbent diffraction pattern in the 2θ range between 10° and 80° were scan with a velocity of 1.5°min⁻¹. For measure nanoparticles size, a transmission electron microscopy (TEM) (PHILIPS CM200 FEG apparatus) and a scanning electron microscope (PHILIPS XL-30) were used. A Cary 100 UV–visible spectrometer (Varian, USA) was used to study UV–visible absorption spectra at 23°C–25°C temperature. To determine the nickel, lanthanum metals and zinc content in the structure, the atomic absorption (AA) spectroscopy (AAS-009 model) and inductively coupled plasma (ICP) emission spectroscopy (Perkin-Elmer ICP/5000) were used. The Brunauer–Emmett–Teller (BET) method (Quantachrome CHEMBET-300) was used for evaluating the surface area.

2.2. Synthesis of LNO and MLNO perovskite structures

For synthesizing the LNO compound, first, 2 g of nickel nitrate was added to a mixture of the citric acid (10.51 g) and ethylene glycol (3.41 g) in 50 mL distilled water under vigorous stirring. The molar ratio of citric acid to nickel nitrate was 5, and it was 1 for ethylene glycol to citric acid. After the nickel nitrate is completely dissolved, the lanthanum nitrate (3.55 g) was added to the stoichiometric ratio. The solution was obtained at 60°C until a gel with high viscosity was mixed slowly by a magnetic stirrer for 12–24 h. The obtained gel for calcination was placed in an electric furnace at a temperature of 800°C for 4 h. The heating rate was 1°C min⁻¹ up to 400 and 3°C min⁻¹ up to 800°C [36,37]. The structure of the perovskite (MLNO) is based on the previous method [38]. In this method, Zinc nitrate was used to make holes on the perovskite LaNiO₃ surface. In this experiment, the added Zn(NO₃)₂ in the final solution was transformed to ZnO with a perovskite structure. Next, the ammonium chloride (2 M concentration) was added to dissolve and exit ZnO from the perovskite structure. Afterward, the etching of this structure was done for 2 h with deionized water. After drying to stabilize the structure, the precipitate was re-calcined at 800°C. During the etching process, a small amount of ammonia is produced according to Eq. (1).

\[
2\text{NH}_3\text{Cl} + \text{ZnO} \rightarrow 2\text{NH}_3 + \text{ZnCl}_2 + \text{H}_2\text{O}
\] (1)

The reason behind the use of ZnO is the high ion radius and the formation of a hole in the perovskite structure, and also easy to dissolve and separate it after calcination of ZnO.

2.3. Method

For the study, the adsorption ability of EBT dye, several parameters are investigated, which include pH, adsorbent dosage, temperature and time. For adsorption experiments, the amount of 0.003-0.02 g of adsorbent was mixed with 10 ml of EBT dye solution to a suitable concentration and pH after shaking 200 rpm and constant temperature. The pH value was adjusted between 2 to 12 using HCl (0.1 mol/L) or NaOH (0.1 mol/L) solution. Finally, using the spectrophotometer and the following equation were measured the amount of adsorption.

\[
\%\text{Removal} = \left(\frac{C_i - C_f}{C_i}\right) \times 100
\] (2)
The adsorption capacity:

\[q_e = \frac{(C_i - C_f) V}{M} \]

(3)

where \(q_e \) is the amount of adsorption capacity, \(C_i \) and \(C_f \) respectively, indicate a balanced and initial concentration of dye in solution (mg/L). Other parameters that are seen in the equation are \(V \) and \(M \) which indicate the solution volume (L) and dosage of the adsorbent (g), respectively.

2.4. Point of zero charge determination

The point of zero charge (PZC) was calculated using the following method: to completely remove the CO₂ dissolved in the water, 100 ml of deionized water added to an Erlenmeyer flask which capped with cotton and then heated for 20 min. Then 10 ml of it was added to a 25 ml Erlenmeyer flask with 0.5 g of adsorbent and mix it for 48 h at 25°C. Finally; the solution pH indicates the PZC. This method has been used satisfactorily.

2.5. Adsorption isotherms

Langmuir and Freundlich are two more common isotherms that widely used to describe the adsorption processes. The Langmuir isotherm model is the first isotherm adsorption, which is based on the molecules, or ions, bond to certain points at the surface of the adsorbent material, and monolayer adsorption occurs. Also, no interaction occurs between adsorbed molecules. This equation has been derived from Gibbs’ method which has been shown in Eq. (3).

\[\frac{C_i}{q_e} = \frac{C_i}{q_{max}} + \frac{1}{bq_{max}} \]

(4)

where \(b \) is the Langmuir adsorption constant (L/mg) and \(b \) is the Langmuir equilibrium constant (mg/L) is the monolayer adsorption capacity, \(C_i \) (mg/L) is the adsorbate equilibrium concentration in solution and \(q_e \) (mg/g) is the concentration of adsorbate on the surface of adsorbent.

A dimensionless constant, \(R_L \), known as separation factor, can be used to explain the essential characteristics of Langmuir isotherm. This equation has been calculated using the following equation.

\[R_L = \frac{1}{1 + bC_o} \]

(5)

where \(b \) is the Langmuir adsorption constant (L/mg) and \(C_o \) is the initial liquid phase concentration of an analyte. The value of \(R_L \) explicates the adsorption process to be linear (\(R_L = 1 \)), unfavorable (\(R_L > 1 \)), favorable (\(0 < R_L < 1 \)), or irreversible (\(R_L = 0 \)).

The basis of the equilibrium Freundlich isotherm is the adsorption occurs at a heterogeneous surface that energy is not distributed uniformly. This heterogeneity leads to the creation of various functional groups on the adsorbent and, consequently, promotes the formation of various mechanisms at an interaction between adsorbent and adsorbent.

2.6. Kinetics studies

To study the kinetic adsorption of adsorbents and dye, the equations of pseudo-first and the pseudo-second was used. In the equations of the pseudo-first equation, the intensity of adsorbent sites filling is proportional to some vacant sites and driving forces are considered to be linear. The pseudo-second equation is based on the level of equilibrium capacity, in which the intensity of adsorbent sites filling is found to be proportional to the square of the number of vacant sites of the adsorbent. The linear form of the pseudo-first and pseudo-second kinetic equations is shown in the following equations:

\[\ln(q_e - q_t) = \ln(q_e) - k_1t \]

(7)

\[\frac{t}{q_t} = \frac{1}{k_2(q_e)^2} + \frac{t}{q_e} \]

(8)

where \(q_t \) and \(q_e \) are the amount adsorption capacities (mg/g) and \(t \) is the time (min) at the equilibrium, and \(k_1 \) and \(k_2 \) respectively, are the first and second rate constant (L/min).

3. Results and discussion

3.1. Analysis of scanning electronic microscopy and TEM

The images of scanning electronic microscopy (SEM) and TEM related to the LNO and MLNO are shown in Fig. 1. From the SEM image of two structures, it can be concluded that the nanosized structure is spherical particles. The results from the TEM images are shown that the diameter of the particles is 20–40 nm and the TEM image of the MLNO is also spherical with 20–40 nm in diameter. However, the size of these particles is in the range of the nanoscale.

The findings of the XRD test for two samples of LNO and MLNO are presented in Fig. 2. Compared to standard cards, nanoparticles, or nano-adsorbents, are well-synthesis because the sample peaks are similar to the standard samples. The particle diameter (i.e., 31 nm) was calculated using the Scherer equation for a high peak at 2θ = 47.3°. As mentioned before, to increase the LaNiO₃ surface area, etching operations using zinc nitrate were performed. XRD
Fig. 1. SEM and TEM images of (a) LNO and (b) MLNO perovskite surface.

Fig. 2. Real and referenced XRD patterns of LNO and MLNO samples after calcination at 800°C (JCPDS# 33-0710).
patterns of the LaNiO$_3$ after etching are shown in Fig. 2. After the etching operation, given that the original structure of LaNiO$_3$ is retained, a small amount of zinc oxide is also present in the XRD spectrum.

3.2. BET, ICP, and AA analysis

Table 1 shows the results of the analysis of the ICP and the surface area by the BET method of the LaNiO$_3$ perovskite catalyst.

The results of ICP showed that the weight percentage of Ni in the MLNO was decreased due to the presence of the ZnO compound in the etching process. The special surface in the structure of LNO is less than that of the MLNO structure, which is synthesized by the sol-gel citrate method [38]. It can be stated that the specific surface for the composition of MLNO is three times higher than LNO. This result is attributed to the presence of zinc oxide with a diameter of 0.75 Å, which was created in the etching process in the final structure of MLNO and increased active surfaces [38]. The results obtained from the study of the active surface in the perovskite structure (LNO) show that the active surface is low, which is due to the synthesis of this structure with the high-temperature sol–gel citrate method and it is consistent with the results presented by other researchers [50]. In the structure of MLNO, Zn has an effective atomic radius of 0.75 Å, which has an active surface of about three times that of LNO. The replacement of the zinc element prior to acidification instead of the nickel element with an effective atomic radius of 0.6 Å provides a cavity in the final structure of MLNO and contains a field for increasing the surface activity of the sample [38]. However, this structure was synthesized with a much higher active surface (30 m2/g).

3.3. Studying the pH effect on the removal efficiency

One of the key factors in the general adsorption process is the effect of pH, which affects the chemical properties of both materials adsorbents and dyes in solution. To study the effect of pH on the adsorption process, 0.005 g of adsorbent added to 10 mL, 100 ppm of EBT solution and the pH of the solution was set at 2–11. Fig. 3 clearly shows the dependence of pH on the EBT adsorption efficiency onto the adsorbents. For the LNO and MLNO adsorbents, with increasing the pH value, from pH 2 to 5, the dye removal is maximum and when the pH value > 5, the removal amount of EBT was decreased to a minimum level. Thus, pH = 5 was selected as the best pH. At lower pH values (pH < pH$_{PZC}$), the adsorbent had a positive charge. Moreover, EBT may be present in anionic forms. In such conditions, EBT molecules have a high tendency with it. By increasing the pH value (pH ≥ pH$_{PZC}$), it tends to change in inverse [51]. The PZC of the LNO and MLNO are 8.3 and 7.7, respectively, the adsorbent surface is positive charge in pH < pH$_{PZC}$, then the dye contains negative charge will combine with adsorbent easily [52,53].

To examine the effect of the adsorbent dosage on the dye removal, different dosages of the adsorbent for adsorption of the 100 ppm EBT solution were used. Results in Fig. 4 show that by increasing the adsorbent dosage of LNO from 0.003 to 0.03 g led to a decrease in the dye removal rate. The obtained optimal mass for the LNO adsorbent was equal to 0.003 g. Similar results were obtained for MLNO, with a bigger rate of decline, where the optimal mass for the adsorbent was measured as 0.003 g. Results showed that the adsorption capacity is decreased with increasing adsorbent dosage, which may be attributed to adsorption sites saturation on an adsorbent surface due to particulate interaction such as aggregation, which would lead to a decrease in total surface area of the adsorbent [54].

<table>
<thead>
<tr>
<th></th>
<th>LNO</th>
<th>MLNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>La (%)</td>
<td>67.5</td>
<td>68.8</td>
</tr>
<tr>
<td>Ni (%)</td>
<td>32.5</td>
<td>26.4</td>
</tr>
<tr>
<td>Zn (%)</td>
<td>–</td>
<td>4.5</td>
</tr>
<tr>
<td>Surface area (m2/g)</td>
<td>3.15</td>
<td>8.6</td>
</tr>
<tr>
<td>Mean pore diameter (nm)</td>
<td>25.2</td>
<td>14.3</td>
</tr>
</tbody>
</table>
The results in Fig. 5 show that the removal efficiency increases by 88% of the removal dye with an increase in the contact time until 20 min. However, as time increased, EBT removal decreased because the availability and abundance of empty sites on the surface of the adsorbent were lower. As a result, the highest dye removal occurred in the first few minutes.

3.4. Results of the adsorption isotherms and kinetics

Fig. 6 presents the adsorption isotherm of adsorbents for EBT dye which was fitted based on the adsorption process data. Table 2 presents the correlation coefficients and the adsorbent parameters. As shown in Table 2, the Freundlich model well fitted the adsorption isotherms, and theoretically, capacity adsorption has the highest amount.

The EBT dye adsorption on the adsorbents carries out quickly, as is inferred from the values of 1/n and R_L values obtained from the Langmuir and Freundlich models, respectively, however, the adsorption of dye carries out favorable. By considering the results of this section that we can conclude that there is multilayer adsorption for the EBT dye on the adsorbents.

Kinetic models can be used as an appropriate model that has information for understanding the adsorption mechanisms. The most widely used equations are the pseudo-first and second-order models. These two models were used to studying the adsorption kinetics of the EBT dye by adsorbents.

According to Fig. 7, the pseudo-second-order model was fitted best to the experimental data which indicates that the rate-limiting step is the chemical adsorption that involves electron transfer between the adsorbent and adsorbate by the
valence force. The results of kinetic models are presented in Table 3.

3.5. Adsorption mechanism research

The pore size and pore volume are important properties considered in the manufacture of materials as adsorbents for specific applications. They are accessible to a molecule of a given size. The physical adsorption mechanism in small pore size is mainly pore filling because of the pore overlapping; thus, larger molecules cannot access the small pore size of the adsorbent. Table 2 shows the maximum adsorption capacities of the LNO is more than that of MLNO. These results also show that modifying the adsorbent increases surface area and pore volume but does not lead to an enhancement in dye adsorption. It seems that the narrowing the pore size in the MLNO leads to an increase in the steric hindrance of the EBT molecules on the adsorbent surface and reduces the amount of adsorption. The results show that modification of the adsorbent surface, which increases the specific surface area and adsorbent porosity, does not increase dye adsorption. Shrinking the size of the cavities in the MLNO has caused the steric effects of the EBT dye to increase the adsorbent surface and reduced the amount of adsorption of the dye.

3.6. Thermodynamic studies

The changes of enthalpy (ΔH°), Gibb’s free energy (ΔG°) and entropy (ΔS°) for the adsorption were determined by:

\[
\Delta G° = \Delta H° - T \Delta S°
\]

where \(R \) is the universal gas constant (8.314 J K⁻¹ mol⁻¹), \(T \) is the solution temperature (K) and \(K_L \) is the equilibrium constant [55]. The calculated parameters of thermodynamic are demonstrated in Table 4.

The values of Gibbs free energy \(\Delta G° \) had been calculated by knowing the \(\Delta H° \) and the \(\Delta S° \) and \(\Delta H° \) was obtained from

<table>
<thead>
<tr>
<th>Adsorption isotherm</th>
<th>MLNO</th>
<th>LNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2)</td>
<td>0.5587</td>
<td>0.835</td>
</tr>
<tr>
<td>(q_{max}) (mg g⁻¹)</td>
<td>19.27</td>
<td>25.90</td>
</tr>
<tr>
<td>(K_L) (L mg⁻¹)</td>
<td>0.0766</td>
<td>0.089</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.8821</td>
<td>0.854</td>
</tr>
<tr>
<td>(K_f) (mg g⁻¹)</td>
<td>16,983</td>
<td>25,848</td>
</tr>
<tr>
<td>(1/n)</td>
<td>0.649</td>
<td>0.518</td>
</tr>
</tbody>
</table>

Table 2

Comparison of dyes adsorption capacity of different adsorbents

Fig. 7. Kinetic models for the adsorption of dyes; pseudo-first-order and pseudo-second-order kinetics.
Table 3
Pseudo-first-order model and pseudo-second-order model parameters constants for the adsorption of dyes on LNO and MLNO

<table>
<thead>
<tr>
<th>Absorbents</th>
<th>Pseudo-first-order model</th>
<th>Pseudo-second-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_1 (min$^{-1}$)</td>
<td>q_e (mg g$^{-1}$)</td>
</tr>
<tr>
<td>MLNO</td>
<td>0.001</td>
<td>12.02</td>
</tr>
<tr>
<td>LNO</td>
<td>0.0006</td>
<td>13.12</td>
</tr>
</tbody>
</table>

Table 4
Thermodynamic parameters for the adsorption of absorbents at different temperatures

<table>
<thead>
<tr>
<th>ΔS° (kJ/mol)</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (kJ/mol)</th>
<th>ΔS° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLNO</td>
<td>2.12</td>
<td>1.91</td>
<td>1.65</td>
</tr>
<tr>
<td>LNO</td>
<td>18.29</td>
<td>17.71</td>
<td>16.94</td>
</tr>
</tbody>
</table>

Table 5
Literature review on catalytic adsorption of dyes in the presence of various catalysts

<table>
<thead>
<tr>
<th>Reference</th>
<th>Catalyst type</th>
<th>Dye</th>
<th>Operating condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. [60]</td>
<td>MoO$_3$</td>
<td>Rhodamine B</td>
<td>5</td>
</tr>
<tr>
<td>Zou et al. [63]</td>
<td>La${0.8}$K${0.2}$FeO$_3$</td>
<td>Methyl Blue</td>
<td>500</td>
</tr>
<tr>
<td>Hua et al. [61]</td>
<td>CuO/γ-Al$_2$O$_3$</td>
<td>Methyl Orange, Direct Brown, Direct Green 1000</td>
<td>1,000</td>
</tr>
<tr>
<td>Ovejero et al. [62]</td>
<td>Ni/MgAlO</td>
<td>Basic Yellow 11</td>
<td>200</td>
</tr>
<tr>
<td>Xu et al. [64]</td>
<td>Mo–Zn–Al, –O</td>
<td>Cationic Red GTL</td>
<td>85</td>
</tr>
<tr>
<td>Palas et al. [29]</td>
<td>LaNiO$_3$</td>
<td>Reactive Black 5</td>
<td>100</td>
</tr>
<tr>
<td>This work</td>
<td>Modified LaNiO$_3$</td>
<td>EBT</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye concentration, mg/L</th>
<th>Catalyst loading, g/L</th>
<th>Temperature, °C</th>
<th>pH</th>
<th>Time, min</th>
<th>Dye removal efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodamine B</td>
<td>5</td>
<td>Room temperature</td>
<td>–</td>
<td>180</td>
<td>85.9%</td>
</tr>
<tr>
<td>Methyl Blue</td>
<td>500</td>
<td>20–50</td>
<td>3</td>
<td>30</td>
<td>99%</td>
</tr>
<tr>
<td>Methyl Orange, Direct Brown, Direct Green 1000</td>
<td>1,000</td>
<td>Room temperature</td>
<td>–</td>
<td>180</td>
<td>83%</td>
</tr>
<tr>
<td>Basic Yellow 11</td>
<td>200</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>80.1%</td>
</tr>
<tr>
<td>Cationic Red GTL</td>
<td>85</td>
<td>100</td>
<td>3</td>
<td>60</td>
<td>65.4%</td>
</tr>
<tr>
<td>Reactive Black 5</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>120</td>
<td>88%</td>
</tr>
<tr>
<td>EBT</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>20</td>
<td>88%</td>
</tr>
</tbody>
</table>
the plot of lnK vs. 1/T, from Eq. (8). Once these two parameters were obtained, ΔG° was determined from Eq. (9). The increased randomness at the solid/solution interface during the adsorption happens when the value of ΔS° is positive [56,57]. The negative values of ΔG° in Table 4 reveal that EBT dye adsorption by adsorbents is spontaneous processes. Also, it is considered that the ΔG° values decreased with temperature growth from 20°C to 60°C, indicating that the method was more efficient at the higher temperature. Furthermore, the values of ΔG° of less than −15 kJ mol⁻¹ for unmodified adsorbent show that the interactions between dye molecules and adsorbent sites are physical. Moreover, according to the Table 4 for dye adsorption by adsorbents, the positive amount of ΔS° and negative value of ΔH° represents that the process is exothermic with increasing in randomness at the solid-solution interface within adsorption [38]. The lower adsorption heat obtained for modified adsorbent indicated that physical rather than the chemisorption adsorption was prevailing [59]. The endothermic process happens when the value of ΔH° is positive, which means that the reaction consumes energy.

3.7. Compare this research with previous research

Table 5 shows a comparison between previous research works that have various transition metal-containing with this research [29,60–63]. The dye removal efficiencies using perovskite structure is rarely reported in the literature such that no study is available on EBT removal in the presence of LaNiO₂ structure.

In various studies (Table 5), the initial concentration of dye is between 5 and 1,000 mg/L. While in this research, 0.3 g/L of LaNiO₂ was done using XRD, SEM, TEM, and BET. To evaluate the practical applications of a system for removing the dye, the reaction time is a very important parameter. In this regard, different times have been investigated for up to 180 min. Reviewing the past papers, it can be concluded that the LaNiO₂ structure has a high power of dye removal at a better time.

4. Conclusion

In this study, the ability of EBT removal from aqueous solutions was examined by modified LaNiO₂ nanoparticles. Identification of the structure of the fabricated adsorbent was done using XRD, SEM, TEM, and BET. To obtain the optimized conditions for studying the efficiency of LaNiO₂ structure (as a compound for dye removal), parameters such as gram content of LaNiO₂, reaction time, pH of the solution, and initial concentration of dye were studied. The results of the present study can be outlined as follows:

- The optimum conditions for 100 mg/L EBT solution were pH of 5 and 0.3 g/L LaNiO₂ and modified LaNiO₂.
- With increasing the dosage of MLNO, the adsorption amount decreased.
- Freundlich isotherm and pseudo-second-order model better predicted the adsorption kinetics and adsorption kinetics, respectively.
- The measuring thermodynamic parameters showed that the adsorption process was spontaneous and exothermic in nature for LNO and spontaneous and endothermic for MLNO.

The results show that the structure of LaNiO₂ perovskite has high efficiency for dye of EBT removal from industrial wastewater treatment.

References

