Bacterial contamination in drinking water of urban Peshawar: a comparative study at the sources and user points of tube wells

Sardar Khan a, Shahid Ali a, Said Muhammad b,*, Bushra Khan a, Abid Ali c, Abd El-Latif Hesham d, Shaheen Begum e

aDepartment of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan, emails: sardar.khan2008@yahoo.com (S. Khan), usmanuop12@gmail.com (S. Ali), bushraasu@yahoo.com (B. Khan)
bNational Centre of Excellence in Geology, University of Peshawar 25130, Pakistan, Tel. +92 91 9221254; Fax: +92 919221228; email: saidmuhammad1@gmail.com
cDepartment of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan, email: uop_ali@yahoo.com
dGenetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt, email: hesham_egypt5@agr.bsu.edu.eg
eDepartment of Environmental Sciences, Fatima Jinnah Woman University, Rawalpindi 46300, Pakistan, email: shaheen_bakht@yahoo.com

Received 21 April 2019; Accepted 29 October 2019

1. Introduction

Water is an essential substance to support life and the ecosystem. Water is a universal solvent, therefore, dissolve or suspend several life essential and non-essential materials [1–5] and may serve as a medium for the survival of numerous microorganisms [6–8]. The contaminants such as microorganisms in the water are considered key factors and associated with various types of diseases occurred in dependent living organisms [9,10]. Globally, deep groundwater is considered a common and safe source of drinking water [11]. However, a number of studies have reported groundwater contamination with infectious microbial agents [6,7]. Studies on microbial contamination of drinking water had attracted global attention because of implied public health impacts [12,13]. Microbial quality of drinking water is a significant characteristic associated with waterborne diseases. Bacterial pathogens are the major source of waterborne diseases causing severe pathological conditions both in the public..
and veterinary sectors [14,15]. Many natural and anthropogenic sources cause microbial contamination in water [16]. The anthropogenic sources are linked directly or indirectly with human or animal excreta and hospital waste. The consumption of contaminated water with pathogenic microbes is known to contribute various kinds of diseases in consumers [17]. Especially in consumers with great risk of infection such as infants, immune-suppressed patients, and elders. These individuals are at high risk of infection with the consumption of contaminated water causing infectious diseases [18,19].

Like other developing countries, Pakistan is facing serious drinking water contamination problems [19,20]. Following national drinking water guidelines, only 56% population has access to safe drinking water [21]. However, according to international drinking water guidelines, only 25.6% (rural 23.5% and 30% urban) population in Pakistan has access to safe water [22]. Due to the lack of proper treatment and inappropriate delivery at the consumer spots, the drinking water of municipalities is mostly contaminated with infectious microbes or hazardous chemicals [23,24]. Studies have been conducted to evaluate the hazardous chemicals in drinking and wastewater of the study area [25,26]. However, studies are scant showing information about drinking water contamination with pathogenic bacterial contamination. Therefore, this study was aimed to investigate the bacterial contaminations in drinking water at source and user points in densely populated Peshawar District, Khyber Pakhtunkhwa, Pakistan. This study also helps to find out the sources of bacterial contamination in drinking water.

2. Materials and methods

2.1. Study area description

Peshawar is provincial capital of Khyber Pakhtunkhwa Province, Pakistan and located at 33°–44′ to 34°–15′ N and 71°–22 to 71°–42′ E. The district is bounded in the north by district Charsadda, east by district Nowshera, south by Orakzai and Khyber Agency, and west by Mohmand Agency. The district covers an approximately 1,257 km² area with 5.6 million population. The district hosts Hayatabad Industrial Estate located in the west of the city. Peshawar remains hot (46°C) during summer and cold (4°C) in winter receiving annual precipitation of 400 mm. The main supplier of drinking water is the district municipalities in the urban area to pump it from groundwater sources and supply to consumers through pipelines [25].

2.2. Water sample collection and preservation

Water samples were randomly collected from the urban area of district Peshawar during January 2016 (Fig. 1). Water samples were collected from tube wells (n = 15) and user...
The total plate count (TPC) of bacteria was determined using a plate counting technique. Serial dilutions (10⁻⁴ to 10⁻⁰) of the product were made and aliquots of 1 mL were added to each Petri dish. Total plates count, coliform bacteria, fecal coliform, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were measured according to the standard methods augar, membrane filtration, membrane filtration with coli-blue and 2% inoculum in Mueller-Hinton broth [27], respectively. Salmonella spp. (V. cholera), Vibrio cholera (V. cholera) and Staphylococcus aureus (S. aureus) were measured according to the procedure of Salmonella-Shigella (SS) medium, fluorescent-antibody direct viable count, Chapman mannned medium (Difco) and incubated aerobically for 24 h at 37°C adopted from [28–31].

Drinking water analyses were conducted in triplicate. The reproducibility of results was found to be at a 90% ± 5% confidence level. Therefore, the mean values of each sample were used for interpretation of further results. The reliability and reproducibility of analyses were checked by analyzing blank and known standards. Chemicals used for water analyses were of analytical grade purchased from MERCK (Germany). For bacterial analyses, the required materials such as cultural media was autoclaved properly.

Table 1

Physicochemical properties of drinking water at sources and user points in the study area

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>Turbidity (NTU)</th>
<th>pH</th>
<th>TDS (mg/L)</th>
<th>EC (μS/Cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source User points</td>
<td>Source User points</td>
<td>Source User points</td>
<td>Source User points</td>
</tr>
<tr>
<td>Agriculture University</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.9 ± 0.32</td>
<td>245 ± 21</td>
<td>409 ± 23</td>
</tr>
<tr>
<td>Hayatabad Phase 1</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.00 ± 0.29</td>
<td>232 ± 18</td>
<td>387 ± 12</td>
</tr>
<tr>
<td>Hayatabad Phase 6</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.20 ± 0.18</td>
<td>235 ± 32</td>
<td>392 ± 17</td>
</tr>
<tr>
<td>Nasir Bagh/Polic Colony</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.63 ± 0.34</td>
<td>405 ± 19</td>
<td>676 ± 25</td>
</tr>
<tr>
<td>Regi/Askari 6</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.75 ± 0.44</td>
<td>361 ± 24</td>
<td>603 ± 29</td>
</tr>
<tr>
<td>Danishabad</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.13 ± 0.13</td>
<td>372 ± 20</td>
<td>621 ± 31</td>
</tr>
<tr>
<td>Peshawar University</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.88 ± 0.22</td>
<td>326 ± 15</td>
<td>542 ± 24</td>
</tr>
<tr>
<td>Tekhal Bala</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.20 ± 0.52</td>
<td>379 ± 14</td>
<td>632 ± 33</td>
</tr>
<tr>
<td>Tekhal Payan</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.60 ± 0.22</td>
<td>667 ± 37</td>
<td>946 ± 102</td>
</tr>
<tr>
<td>Defense Colony</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.78 ± 0.30</td>
<td>431 ± 16</td>
<td>719 ± 27</td>
</tr>
<tr>
<td>Shami Road</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.78 ± 0.22</td>
<td>358 ± 23</td>
<td>589 ± 30</td>
</tr>
<tr>
<td>Bacha Khan Chowk</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.88 ± 0.22</td>
<td>346 ± 28</td>
<td>578 ± 26</td>
</tr>
<tr>
<td>Noutia</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>6.73 ± 0.17</td>
<td>439 ± 35</td>
<td>732 ± 41</td>
</tr>
<tr>
<td>Gulberg</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.48 ± 0.31</td>
<td>325 ± 21</td>
<td>543 ± 23</td>
</tr>
<tr>
<td>Gul Bahar</td>
<td><5 ± 0.0 <5 ± 0.0</td>
<td>7.38 ± 0.15</td>
<td>338 ± 15</td>
<td>564 ± 21</td>
</tr>
</tbody>
</table>

3. Results and discussion

3.1. Physicochemical parameters

Results of physicochemical parameters in urban areas of district Peshawar are summarized in Table 1. The turbidity of drinking water was noted less than 5 NTU, while pH values were ranged from 6–8.2. pH values ranging between 3–10.5 can support pathogenic bacterial growth [32]. Likewise, pH also effect the growth of bacteria, at extreme pH (<4.5 or >8.2). Cell die-off can be predictable but the standard pH range for most drinking water sources is near to 7 and this pH value doesn't affect the bacterial growth [33]. The pH of drinking water most commonly ranges from 6.0–8.5 of World Health Organization (WHO) [34]. When the pH of drinking water is less than 7, it contributes to the corrosion of water pipes resulting in the release of metals into the drinking water.

In drinking water samples, EC values were ranged from 387–1,320 μS/Cm. The Higher EC value indicates the existence of a high amount of dissolved inorganic substances [20]. Similarly, the TDS values in drinking water samples ranged from 232–688 mg/L. The TDS and EC values of the study areas were found within the safe drinking water guidelines set by WHO [34].

3.2. Bacterial parameters

Water may serve as a medium for the survival of various microorganisms' species. For human use and consumption, the most important microorganisms are pathogens that
are capable of causing diseases. The waterborne pathogens include bacteria species such as *V. cholera*, *Salmonella*, *Shigella*, and *S. aureus* mostly occurred in sewage, human feces, wildlife and wildfowl contaminated water. In addition, some of the group may survive in drinking water biofilms and regrow during high temperature [6,19].

Table 2 summarizes the bacterial contamination of drinking water samples collected from urban areas of district Peshawar. The current research provided a picture of bacterial contamination in the drinking water of the study area.

3.2.1. Total plate count

TPC is useful for representing the general drinking water quality and the existence of pathogens or opportunistic pathogens. Standard plate count is used as an indicator of bacterial population in drinking water collected from various sources. Microbial load in these water samples ranged from 48–1,600 CFU/mL (Table 2). Results of the study area showed that the bacterial contamination in 88% of water samples was found above the safe drinking water permissible limit. The rest of the samples (12%) collected from tube wells of Agriculture University, University of Peshawar and residential areas (Askari 6, Hayatabad Phase-1 and Gulbahar) were found within the range of WHO [34] standard set for TPC in water. In addition, results revealed that drinking water contamination level was high (91.7%) at user points as compared to source at the tube wells (73.3%) (Fig. 2).

The bacterial contamination of drinking water samples may be due to the failure of source water disinfection, infiltration of contaminated water through cross-connection and at leakage points. Although, TPC bacteria are naturally present in all saturated environment; however, a rapid increase in TPC levels might sometimes be linked with fecal and wildlife contamination.

3.2.2. Coliform bacteria

Coliform bacteria in drinking water samples were found in a range between <1.1 to 16 MPN/100 mL (Table 2). The highest value (16) of total coliform bacteria was found at user point TP2 (a), while the sampling points where the concentration of coliform bacteria found within the safe limit of drinking water guidelines set by WHO [34] (<1.1 MPN/100 mL). Some sampling points were observed with bacterial contamination (Table 2). Coliform bacteria contamination was found maximum (65%) for user points as compared to source at the tube wells (40%) (Fig. 2).

The coliform group of bacteria has always been used to assess the drinking water quality and indicate water pollution. On the other hand, high levels of coliforms in drinking water supply may point out contamination from the surface or shallow subsurface sources such as soil, wildlife, septic or open-drain leakage and treatment failures [35]. The presence of coliform bacteria in the water samples collected from the sources and user points indicating the quality of pipes used in tube wells were either of poor quality or corroded rapidly with time. Similarly, the pipes used for distribution lines were mostly cemented material that was observed leaked or broken at several points causing seepage from sewage line into the water.

3.2.3. Fecal coliform

Results of drinking water showed that 34.7% of samples had fecal coliform bacteria contamination and rest (64.3%) of sampling points were clear (Table 2). The contamination level in the samples of tube wells and user points was greatly varied. The highest (38.3%) of samples showed fecal coliform bacterial contaminations at the user points, while the lowest (20%) in the samples collected at the source.

The presence of fecal coliform in the water indicates the presence of fecal contamination. The presence of coliform group bacteria always indicates sewage contamination of drinking. The presence of fecal coliform in drinking water poses a threat to human life. Therefore, regular use of chlorine or boiling water may help to irradiate these pathogens from water reservoirs [35].

3.2.4. Escherichia coli

E. coli was found in 20% of drinking water samples collected from the study area (Table 2). *E. coli* contaminations were found highest (28.3%) of water samples at user points as compared to the source, that is, at tube wells (13.3%). Previous studies mostly focused on arsenic and another toxic element contamination in drinking water [36] and very little attention is given water contamination with pathogenic organisms in this study area.

3.2.5. Salmonella

The data indicated that 9.3% of drinking water samples were found positive for the presence of *Salmonella* spp. Only at the user point (Table 2). The sources that showed positive results for *Salmonella* were both tube wells and user points. In most of the sites, all samples were found negative and thus showed the absence of *Salmonella* spp. The contamination level of water with *Salmonella* spp. was higher at the user point (8.3%).

Fig. 2. Comparison (%) of bacterial contamination at the sources and user points.
Table 2
Microbial contamination in drinking water of the study area

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>Total plate count (cfu/mL)</th>
<th>Coliform bacteria (MNP/100 mL)</th>
<th>Fecal coliform</th>
<th>E. coli</th>
<th>Salmonella</th>
<th>Shigella</th>
<th>Vibrio cholera</th>
<th>Staph aureus</th>
<th>Pseudomonas aurogenosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture University</td>
<td>64</td>
<td>473 ± 43</td>
<td>1.1</td>
<td>4.35 ± 0.9</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Hayatabad Phase 1</td>
<td>910</td>
<td>261 ± 28</td>
<td>6.9</td>
<td>2.63 ± 1.2</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Hayatabad Phase 6</td>
<td>140</td>
<td>194 ± 36</td>
<td>1.1</td>
<td>1.10 ± 0.1</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Nasir Bagh/Police Colony</td>
<td>370</td>
<td>284 ± 14</td>
<td>5.1</td>
<td>4.08 ± 2.0</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Regi/Askari 6</td>
<td>67</td>
<td>420 ± 5</td>
<td>1.1</td>
<td>1.10 ± 0.1</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Danishabad</td>
<td>300</td>
<td>511 ± 63</td>
<td>1.1</td>
<td>3.63 ± 1.1</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Peshawar University</td>
<td>75</td>
<td>214 ± 18</td>
<td>1.1</td>
<td>3.18 ± 2.7</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Tehkal Bala</td>
<td>158</td>
<td>353 ± 58</td>
<td>1.1</td>
<td>5.48 ± 3.2</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Tehkal Payan</td>
<td>244</td>
<td>551 ± 18</td>
<td>2.2</td>
<td>2.63 ± 1.2</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Defense Colony</td>
<td>210 ± 10</td>
<td>260 ± 83</td>
<td>1.1</td>
<td>1.38 ± 0.6</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Shami Road</td>
<td>840</td>
<td>875 ± 58</td>
<td>3.6</td>
<td>5.85 ± 3.0</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Bacha Khan Chowk</td>
<td>540</td>
<td>545 ± 46</td>
<td>1.1</td>
<td>7.55 ± 0.6</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Noutia</td>
<td>584</td>
<td>396 ± 69</td>
<td>3.6</td>
<td>4.45 ± 2.0</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Gulberg-2</td>
<td>336</td>
<td>238 ± 77</td>
<td>2.2</td>
<td>4.33 ± 3.3</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Gul Bahar</td>
<td>62</td>
<td>86 ± 9.8</td>
<td>1.1</td>
<td>1.10 ± 0.0</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>
3.2.6. Shigella

In the study area, 14.7% of drinking water samples were found positive for the presence of Shigella spp. (Table 2). The level of contamination caused by Shigella spp. was greatly varied at the user point. The contamination of samples with Shigella spp. at user points (14.4%) was observed higher as compared to the source tube wells (6.7%).

3.2.7. Vibrio cholera

Drinking water (3) samples were found positive for the presence of V. cholera, whereas S. aureus was not determined in any water sample (Table 2). Out of 3 water samplings, two samples were from user points, while only one sample was at source (Table 2). The water that contained microorganisms if ingested, may cause health problems such as cholera, acute diarrheal diseases, and other severe infections [37].

3.2.8. Pseudomonas aeruginosa

Drinking water showed contamination with P. aeruginosa, (13.3%) as given in Table 2. The existence of P. aeruginosa in drinking water is associated with a decline in water quality such as color, turbidity, taste, and odor. It is useful to check whirlpools, Spa pools, and swimming pools for P. aeruginosa because they can cause ear infection, which always linked with these recreational sources and the existence of P. aeruginosa. The P. aeruginosa is considered as an indicator of a disinfection process due to their increased resistance as compared to other microorganisms against chemicals used. In some cases, it may be the cause of some opportunistic diseases in man particularly debilitated patients [38]. P. aeruginosa is one of the most common causes of nosocomial infections, including urinary tract infection, pneumonia, and maybe acted as life-threatening organisms [39,40].

4. Conclusions

Physicochemical parameters including turbidity, pH, TDS, and EC in drinking water of the study area were found within the drinking water guidelines set by WHO. However, the TPC revealed that 80% of samples violated the safe drinking water guidelines and showed contamination of fecal coliform, E. coli, Salmonella spp., Shigella spp., V. cholera and P. aeruginosa. Results revealed that drinking water had bacterial contamination both at source and user points. Drinking water contamination was observed higher at consumer point as compared to the source. Higher bacterial contaminations at consumer point could be attributed to pipelines leakage, biofilm, and growth in pipes, improper handling, and storage of drinking water. In summary, we recommend the replacement of leaking pipes, washing and chlorination of water tanks at intervals and awareness for proper handling. Moreover, drinking water should be boiled or chlorinated before use to avoid microbial contamination.

Acknowledgments

This study was financially supported by the Higher Education Commission, Islamabad, Pakistan, and the University of Peshawar, Pakistan.

References

[29] B. Million, Assessment of the Contamination Level of Water at Collection Points and Determination of the Major Sources of Contaminants in the Central Highlands of Ethiopia, Yubdo Legabatu PA, 2008.

