Application of synthesized Mn₃O₄ nanoparticle in Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes for polyvinyl alcohol (PVA) removal from aqueous solution

Reza Shokoohi a, Mohammad Taghi Samadi a, Ghorban Asgari a, Kazem Godini b, Zahra Torkshavand b, Mohammad Vanaei Tabara*,

a Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran, emails: m.vanaei1367@gmail.com (M.V. Tabara), reza.shokoohi@umsha.ac.ir (R. Shokoohi), samadi@umsha.ac.ir (M.T. Samadi), g.asgari2003@gmail.com (G. Asgari), zahra.torkshavand@yahoo.com (Z. Torkshavand)
b Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran, email: kgoodini@razi.tums.ac.ir (K. Godini)

Received 26 July 2019; Accepted 2 February 2020

ABSTRACT

Polyvinyl alcohol (PVA) is one of the refractory chemicals that is widely used in several industries as raw material and may be released into receiving waters through unsanitary disposal of different wastewaters. This compound is considered as a hard biodegradable and resistant material and is harmful to human health. Its presence in water resources causes a disturbance in the deposition and removal of heavy metals and the formation of foam in water treatment processes. Therefore, in the current research, for the first time, we investigated the performances of Mn₃O₄/H₂O₂, Mn₃O₄/H₃K₅O₁₈S₄ methods in PVA removal from aqueous solutions. The effect of variables such as the concentration of peroxymonosulfate, hydrogen peroxide, Mn₃O₄ nanoparticle, PVA and contact time on the two processes were studied. Moreover, the analyses of X-ray diffraction, Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, scanning electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy were utilized to characterize the nanoparticles. The results showed that 93.14% and 67.98% of PVA was removed, respectively, by Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ under the following optimum conditions pH = 3, peroxymonosulfate concentration = 4.88 mmol/L, Mn₃O₄ concentration = 0.4 g/L, H₂O₂ concentration = 20 mmol/L and initial PVA concentration 100 mg/L.

Keywords: pH solution; Peroxymonosulfate; Nanoparticles; Co-precipitation method

1. Introduction

Polyvinyl Alcohol (PVA), which is generated from hydrolysis of polyvinyl acetate, is of refractory compounds in water and is widely applied in various industries such as textile, adhesives, paper, detergent, and so forth [1]. This compound is also used for the treatment of eye inflammation [2]. PVA is produced more than other water-soluble polymers [3]. Moreover, huge amounts of PVA are discharged into sewers, which can consequently be entered into the food chain and accumulates in the human body. It can also avoid heavy metals from sedimentation in rivers and lakes and this causes the metals to be distributed into the environment [4–7]. Therefore, the treatment of effluents containing PVA is of great importance. Common methods like electrocoagulation methods [2], biological degradation [2,8] and physical adsorption [9] cannot treat PVA efficiently. All these ways have their drawbacks such as high cost of operation and maintenance [10]. Advanced oxidation processes (AOPs) can remove organic matters effectively [11]. Some AOPs such as Fenton [12], Fenton-like system [13] and heterogeneous-like catalyst [14], which have recently been attracting great attention, have been used for pollutant degradation. In some
studies, a few environmentally friendly catalysts have been used for organic pollutant removal [15,16]. Mn₃O₄, as a practical oxidant, has magnetic, ion exchange, electrochemical and catalytic properties [17]. Many water-soluble catalysts are harmful to the environment whereas this is not the case for Mn₃O₄ because it can be recovered from water easily [18]. Moreover, it is an environmentally benign compound. It can even be more efficient in organic matter removal than iron nanoparticles. In the presence of this nanoparticle, H₃K₅O₁₈S₄ can create active SO₄ radicals, which can treat effectively refractory materials, particularly PVA. It is a powerful oxidant (E° = 2.01) and it is very stable under ordinary temperature (25°C) [19]. Furthermore, in the presence of Mn₃O₄ and H₂O₂, OH radicals are formed, which can mineralize a wide range of organic matters [14]. Some methods such as co-precipitation [20], thermal degradation [21], crystallization [22] and sol-gel [23] are used for preparing the Mn₃O₄ nanoparticles. Naturally, it has been a big challenge to introduce a way of having the fewest limitations like need to pressure and temperature control and using a detergent, as well as the coarser size of the produced particles making Mn₃O₄ difficult to be applied in the full-scale application. Therefore, in the present study, it was tried to synthesize the Mn₃O₄ nanoparticles through an easier measure under environmental conditions with higher efficiency. Also, the structural properties of the nanoparticles were studied and it was used as a catalyst in processes: Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ for PVA oxidation.

2. Materials and methods

2.1. Chemicals

All materials used in this study, including potassium permanganate (99%), hydrazine monohydrate (98%), pure ethanol, peroxymonosulfate (99%), hydrogen peroxide (30%), PVA (98%), boric acid (99.5%), potassium iodide (99.5%) and iodide (99.8%), were purchased from Merck Co. (Germany).

2.2. Synthesis and characterization of Mn₃O₄ nanoparticles

First, the Mn₃O₄ nanoparticle was synthesized through a co-precipitation method and the optical and structural properties of it were investigated. To this end, 4 mM of KMnO₄ was dissolved in 200 mL of distilled water on a magnetic mixer under environmental temperature (22°C). Next, 200 mL of hydrazine monohydrate solution containing 40 mM of hydrazine monohydrate was added quickly to the prepared solution on a mixer with a high rpm. At this stage, the color of the solution changed from violet to dark brown. The pH of the solution was adjusted at 9 by using H₂SO₄ (1 M). Then, the obtained solution was mixed for 15 min and finally was washed three times, twice with distilled water and once with ethanol and oven-dried at 50°C for 8 h [24]. To investigate the optical and structural properties of this nanoparticle, X-ray diffraction was used (Bruker D8 Advance, Germany). The surface area, pore-volume, and pore size were obtained using Brunauer–Emmett–Teller and Barrett–Joyner–Halenda (BELSORP-mini II, BEL Japan Inc.) methods, respectively. The field emission scanning electron microscope (FESEM; MIRA3TESCAN-XMU) was employed to characterize the nanoparticles, by which the mesoporous structure of Mn₃O₄ was seen. Furthermore, Fourier transform infrared spectroscopy (Bruker Vertex 70 FTIR spectrometer; Germany) was used to characterize the immobilization of polyethylene glycol (PEG) and folic acid on the nanoparticle surfaces. To quantify the properties of the Mn₃O₄ nanoparticles, energy-dispersive X-ray spectroscopy was applied [25,26]. The results of all these analyses have been presented in detail in our previous study [27].

2.3. Experimental setup and procedure

All solutions in the present study were prepared synthetically. The stock solution (1,000 mg/L) was made as follows: 1 g of pure PVA was dissolved in 1 L of distilled water and other concentrations were prepared from the stock solution. To detect PVA contents, the absorbance of the test samples was determined via a UV-Vis spectrophotometer (HACH, DR5000; Germany) the maximum absorbance wavelength of PVA (λ: 690 nm) [2,28,29]. All variables including pH (3, 5, 7, 9, and 11), H₃K₅O₁₈S₄ concentration (1.3, 2.6, 3.25, 3.9, and 4.88 mmol/L), H₂O₂ concentration (10, 20, 30, 40, and 50 mmol/L), Mn₃O₄ nanoparticle concentration (0.2, 0.3, 0.4, 0.5, and 0.6 g/L), contact time (20, 40, 60, 80, 100, and 120 min) and PVA concentration (25, 50, 100, 150, and 200 mg/L) were investigated in all steps in the current study. The experiments were conducted in two steps: the Mn₃O₄/H₃K₅O₁₈S₄ and Mn₃O₄/H₂O₂ processes and also the effects of the variables on the performance were studied.

3. Results and discussion

3.1. Effect of pH on PVA removal by Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes

Since in most AOPs reactions pH plays a direct role in OH radicals and, in turn, affects the performance, we first studied this parameter. To do this, three levels of pH (1) acidic conditions (pH 3 and 5), (2) neutral conditions (pH 7) and (3) alkaline conditions (pH 9 and 11) were examined. The results obtained have been shown in Figs. 1a and b. As can be seen, in the Mn₃O₄/H₂O₂ process, at pH = 3 and contact time = 120 min, the removal efficiency of PVA was 63.4%, but it decreased dramatically with increasing pH. And, in the case of Mn₃O₄/H₃K₅O₁₈S₄, at the same conditions, 88.84% and 62.4% of PVA were degraded at pHs = 3 and 11, respectively. Thus, the pH of 3 was selected as the optimum value for both methods and all other runs were conducted at this value. The reason for this decrease in performance with increasing pH value is the production of HO₂⁻ because of a reaction between O₂⁻ and H⁺. As a result, HO₂⁻ can form H₂O₂ that can be converted to OH⁺ [Eqs. (1)–(4)]. However, in alkaline conditions, hydroxyl radicals are quickly decomposed [30].

\[
\begin{align*}
O₂ + H⁺ &\rightarrow HO₂^+ \quad (1) \\
HO₂^- + HO₂^+ &\rightarrow H₂O₂ + O_2 \quad (2) \\
H₂O₂ + e^- &\rightarrow HO^- + OH^- \quad (3)
\end{align*}
\]
3.2. Effect of Mn3O4 nanoparticle concentration on PVA removal

In this work, different contents (0.2, 0.3, 0.4, 0.5, and 0.6 g/L) of the Mn3O4 nanoparticle were tested to study the changes in the performance of the two methods; the findings have been shown in Figs. 2a and b. The removal efficiency increased with increasing the nanoparticle concentration up to 0.4 g/L and after this point, it decreased largely. As can be seen from the figure, the highest removal efficiencies were found to be 63.4% and 89.03%, respectively, for the processes of Mn3O4/H2O2 and Mn3O4/H3K5O18S4 at the PVA content of 100 mg/L and contact time of 120 min. This decrease in removal efficiency is attributed to the fact that at high concentrations of the nanoparticle the manganese ion, which is a basic agent in PVA oxidation, reacts with the hydroxyl ion and its concentration goes down. In the study by Saputra et al. [32], who compared the efficiency of the nanoparticles: Mn3O4, Fe3O4, and Co3O4 in phenol removal, it was shown that Mn3O4 had better performance and the removal efficiency went up when there was an increase in the concentration of the nanoparticle from 0.1 to 0.4 g/L, this observation is in agreement with those of the current research [32].

3.3. Effect of H2O2 concentration on PVA removal by Mn3O4/H2O2

We used the concentrations (10, 20, 30, 40, and 50 mmol/L) of H2O2 to determine changes in the removal efficiency of PVA. The highest removal efficiency (68.98%) was attained at the concentration of 20 mmol/L of H2O2 and 100 mg/L of PVA within 120 min, but it declined to 48.02% at the concentration of 50 mmol/L during 120 min (Fig. 3). In general, in the
MnO₂/H₂O₂ process, hydroxyl generated radicals by H₂O₂ and manganese tetroxide via three pathways including substitution with hydrogen, electron transfer or radical regeneration decompose the organic pollutant. Thus, it can be claimed that the more oxidant agent (H₂O₂), the more hydroxyl radical generation will be, which can further oxidize organic materials. As mentioned above, there was an increase in PVA ical generation will be, which can further oxidize organic materials. The results of the study by Zhang et al. [35] reported that, with increasing H₂O₂ concentration to 2.5 mmol/L, the removal efficiency of humic acid by the Fenton process was 52%. A decrease in removal efficiency that happened through increasing H₂O₂ concentration 20 mmol/L and pH 3 (Figs. 5a and b). A decrease in removal efficiency is because of the generation of the radicals of sulfate and hydroxyl [38]. In accordance with our study, Saputra et al. [32], who worked on phenol removal by the nanoparticle of MnO₂ and H₂K₅O₁₈S₄, documented that the efficiency improved with increasing H₂K₅O₁₈S₄ concentration [32].

3.5. Effect of initial PVA concentration on the processes of MnO₂/H₂O₂ and MnO₂/H₂K₅O₁₈S₄

Different contents (25, 50, 100, 150, and 200 mg/L) of PVA were exerted to study changes of the removal efficiency under the following conditions: H₂K₅O₁₈S₄ concentration 4.88 mmol/L, nanoparticle concentration 0.4 g/L, H₂O₂ concentration 20 mmol/L and pH 3 (Figs. 5a and b). A decrease in PVA removal was observed with raising PVA content. This decrease in efficiency that happened through increasing pollutant content can be expressed by the kind of the contaminant and an AOP used in this study as in the processes of MnO₂/H₂O₂ and MnO₂/H₂K₅O₁₈S₄ only some certain amounts of active radicals are produced. Thus, these processes can oxidize and remove some specific levels of organic materials. The results of the study by Zhang et al. [35] showed a decline in removal efficiency via initial PVA concentration. Also, the impact of pollutant concentration on the removal efficiency of humic acid by the Fenton process was
that the reaction rates; the results indicated that the rate of the process in the second-order model was higher than that of COD removal. Moreover, some experiments under the following conditions: initial PVA concentration = 100 mg/L, pH = 3, H₂O₂ concentration = 20 mmol/L, Mn₃O₄ concentration = 0.4 g/L, and H₃K₅O₁₈S₄ concentration = 4.88 mmol/L. As can be seen in Fig. 6, the highest removal efficiencies were attained in the processes of H₂O₂, Mn₃O₄, H₃K₅O₁₈S₄, Mn₃O₄/H₂O₂, and H₃K₅O₁₈S₄, which were 9.42%, 15.09%, 22.85%, 67.98%, and 92.96%, respectively. Since the mineralization of organic materials through processes like Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ or other methods is shown by a decrease in COD, at this stage, the performance of each method was measured via determining the level of COD removal. Therefore, some experiments under the following conditions: pH 3, PVA concentration 100 mg/L, Mn₃O₄ concentration 0.4 g/L, H₂O₂ concentration 20 mmol/L, and H₃K₅O₁₈S₄ concentration 4.88 mmol/L were conducted (Fig. 7). As can be seen, the rate of PVA removal was more than that of COD removal.

4. Conclusions

It was found that pH had a significant effect on the efficiency of the Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes and pH 3 showed the highest removal rates. Moreover, the removal efficiency of the two processes increased with increasing peroxymonosulfate and Mn₃O₄ concentration (up to 4.88 mmol/L and 0.4 g/L, respectively). Also, the maximum efficiency of Mn₃O₄/H₂O₂ was obtained at 20 mmol/L of hydrogen peroxide. Also, the efficiency of Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes decreased with increasing PVA concentration. The results of the kinetic study showed that the removal process followed the second-order kinetic for Mn₃O₄/H₂O₂, and H₃K₅O₁₈S₄, which were 9.42%, 15.09%, 22.85%, 67.98%, and 92.96%, respectively. Since the mineralization of organic materials through processes like Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ or other methods is shown by a decrease in COD, at this stage, the performance of each method was measured via determining the level of COD removal. Therefore, some experiments under the following conditions: pH 3, PVA concentration 100 mg/L, Mn₃O₄ concentration 0.4 g/L, H₂O₂ concentration 20 mmol/L, and H₃K₅O₁₈S₄ concentration 4.88 mmol/L were conducted (Fig. 7). As can be seen, the rate of PVA removal was more than that of COD removal.

3.6. Kinetics of PVA degradation in Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄

Tables 1 and 2 present the result of the kinetic of PVA degradation in the two processes. The findings illustrated that the two processes fit the second-order equation. Besides, we tested five levels of PVA concentration (25, 50, 100, 150, and 200 mg/L) to study the reaction rates; the results indicated that the R² coefficient increased with raising PVA content in both first- and second-order kinetics. Ertugay et al. [40] determined the kinetics of chemical oxygen demand (COD) removal via an AOP applied for dye removal; the results showed that the rate of the process in the second-order model showed the highest dependency. In the present study, the R² coefficient went up by increasing the concentration of the contaminant.

<table>
<thead>
<tr>
<th>Concentration (mg/L)</th>
<th>Zero-order</th>
<th>First-order</th>
<th>Second-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.7709</td>
<td>0.9194</td>
<td>0.9583</td>
</tr>
<tr>
<td>50</td>
<td>0.7777</td>
<td>0.9047</td>
<td>0.9641</td>
</tr>
<tr>
<td>100</td>
<td>0.8023</td>
<td>0.9182</td>
<td>0.9701</td>
</tr>
<tr>
<td>150</td>
<td>0.7611</td>
<td>0.8622</td>
<td>0.9386</td>
</tr>
<tr>
<td>200</td>
<td>0.7434</td>
<td>0.8142</td>
<td>0.8988</td>
</tr>
</tbody>
</table>

3.7. Synergistic effect of the key parameter of Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes and determination of COD removal

In order to investigate the synergistic impact of the variables influencing the Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ processes, some experiments were performed under the following conditions: initial PVA concentration = 100 mg/L, pH = 3, H₂O₂ concentration = 20 mmol/L, Mn₃O₄ concentration = 0.4 g/L, and H₃K₅O₁₈S₄ concentration = 4.88 mmol/L. As can be seen in Fig. 6, the highest removal efficiencies were attained in the processes of H₂O₂, Mn₃O₄, H₃K₅O₁₈S₄, Mn₃O₄/H₂O₂, and H₃K₅O₁₈S₄, which were 9.42%, 15.09%, 22.85%, 67.98%, and 92.96%, respectively. Since the mineralization of organic materials through processes like Mn₃O₄/H₂O₂ and Mn₃O₄/H₃K₅O₁₈S₄ or other methods is shown by a decrease in COD, at this stage, the performance of each method was measured via determining the level of COD removal. Therefore, some experiments under the following conditions: pH 3, PVA concentration 100 mg/L, Mn₃O₄ concentration 0.4 g/L, H₂O₂ concentration 20 mmol/L, and H₃K₅O₁₈S₄ concentration 4.88 mmol/L were conducted (Fig. 7). As can be seen, the rate of PVA removal was more than that of COD removal.
Fig. 6. Removal efficiency and synergistic effect of the PVA in various conditions in the aqueous solutions.

Fig. 7. Results of COD removal by MnO3/H2O2 and MnO3/H3K5O18S4

Acknowledgment

The authors are grateful for financial support from Hamadan University of Medical Sciences (Grant No. 9403261756).

References

