Adsorption of humic acid from seawater on organo Mg–Fe-layered double hydroxides: isotherm, kinetic modeling, and ionic strength

K. Bouarouria, M.W. Naceurã, S. Haninib, S. Soukanea, M. Laidib, N. Drouichéc,*

aLaboratoire Eau, Environnement, et Developpement Durable (2E2D), Chemical Engineering Department, Blida1 University, BP 270 Blida, Algeria
bBiomaterials and Transport Phenomena Laboratory (LBMPT), Médéa University, 26000 Médéa, Algeria
cCentre de Recherche en Technologie des Semi-Conducteurs pour l’Energétique, 2 Bd Frantz Fanon BP140 Alger-7-merveilles, 16038 Alger, Algeria, email: nadjiabdrouiche@yahoo.fr (N. Drouiche)

Received 20 November 2019; Accepted 17 March 2020

Abstract

The aim of this study is to bring an in-depth understanding of the adsorption phenomenon of humic acid onto calcined layered double hydroxides (LDH) and organophilic LDH in seawater. LDHs were prepared by co-precipitation at constant pH with a molar ration $\text{M}^+2/\text{M}^+3 = 2$. Organophilic LDH were prepared by interposing a surfactant (sodium dodecylsulfate, SDS 0.1 M). All samples were characterized using X-ray diffraction, Fourier transform infrared spectrometry, Brunauer–Emmett–Teller method, and scanning electron microscopy. Several adsorption kinetics models (pseudo-first-order, pseudo-second-order, nth-order, and intraparticle diffusion) were tested against the experimental results. The calculation of the corresponding parameters shows that results are best fitted with the nth-order ($n \in \mathbb{R}^+$) $n \neq 1$ model with a determination coefficient close to 1 and a relatively small root mean square error. Among the available mathematical models used to describe the isotherms experimental results (Langmuir, Freundlich, Sips, and many-parameters models). The six models that are proposed show a better performance than Freundlich, Langmuir, and Sips. The calculation of the parameters of the different adsorption models was performed on MATLAB using genetic algorithms. Thermodynamic analysis of sorption isotherms suggests that sorption process of humic acid is spontaneous ($\Delta G^o < 0$), with a positive enthalpy variation, characteristic of an endothermic process. The positive entropy variation indicates a disorder increase at the solid-solution interface during humic acid sorption. The values of the effective diffusion coefficient and energy activation deduced by modeling range between $(10^{-13}–10^{-9})$ m²/s and $E_a = (28–33)$ kJ/mol, respectively, as reported in the literature. The materials prepared showed an excellent regeneration ability and were successfully reused after several adsorption cycles.

Keywords: Adsorption; LDH; Humic acid; Seawater; Anionic surfactant; Organophilization

I. Introduction

Seawater contains mineral and organic compounds either emanating from both animal and vegetal life or produced by chemical synthesis [1]. Among natural organic compounds are humic species, mainly consisting of humic and fulvic acids that represent the major vector of toxic species such as heavy metals and pesticides [2,3]. Humic acids have a strong effect on the properties of natural water since they represent most of the dissolved organic matter [4] with 50%–90% of dissolved organic carbon [5]. These molecules
affect the taste and color of water [6], and represent a source of nutrients to bacteria and trap heavy metals, pesticides, and herbicides [3]. Moreover, the reaction between humic acids and chlorine during water treatment produces carcinogenic compounds [7]. Humic acids have a negative charge in aqueous solutions due to the presence of carboxylic and phenolic functions [8,9]. Several physical, chemical, and biological processes have been used to eliminate humic compounds such as coagulation, flocculation, precipitation, oxidation, and adsorption [10]. Among these techniques, adsorption is popular due to its advantages of easy operation, high efficiency, low cost, and reusability [11,12]. However, adsorption has certain limitations also, such as it could not achieve a good status at commercial levels due to the lack of suitable adsorbents of high adsorption capacity and unavailability of commercial scale columns. Moreover, the design of suitable adsorbent, which has good performance, should be considered as a crucial stage [13]. Recent use of anionic clays (layered double hydroxides, LDH) as adsorbents showed a particular interest in the elimination of micro-pollutants [13]. LDH have a brucite layer structure [14] where the brucite layers (MII(OH)2) are positively charged. This is due to the partial substitution of bivalent cations MII by trivalent cations MIII [15]. Electroneutrality is ensured by anionic species, which are solvated by water molecules present in sheets interspace [13]. The lamellar structure enhances ionic exchanges of these compounds, thus broadening their range of applicability (catalysis, environment, pharmaceutical) [16]. These anionic clays were the topic of numerous investigations for their physical and chemical properties. The calcined phase of the anionic clay has been widely used as an adsorbent [17]. The insertion of anionic surfactants modifies the hydrophilic property of the clay which becomes hydrophobic and capable of adsorbing organic pollutants [18]. Anionic clays have been used as adsorbents in environmental applications. Li et al. [19] focused on the adsorption tests of humic acid on calcined and non-calcined Magnetic Zn/Al LDH (MgZn/AlLDH). They showed that the adsorption capacity of calcined LDH, equal to 80 mg/g, is higher than that of non-calcined LDH, equal to 49.15 mg/g. This study revealed that M Zn/Al CLDH was an effective adsorbent for HA removal in water treatment. Zermane et al. [20] investigate and compare the efficiency of three adsorbents toward the adsorption of Basic Yellow 28 both in single and binary mixture systems where the influence of humic acid as co-adsorbate on the sorption parameters was examined. The adsorbents investigated in this study were as follows: (i) an iron organo–inorgano pillared clay (Fe-SMPM), (ii) goethite and hydrous ferric oxide, two synthetic iron oxides. Humic acid is organic matter with various functional groups, extensive sources and has been considered as an adsorbent for heavy metal removal. Heat-treated humic acid/MgAl-layered double hydroxide composite (HA/MgAl-LDH) was fabricated by Xiang et al. [21] through a coprecipitation method and used as an adsorbent for the removal of Cd in aqueous solution. The maximum theoretical adsorption capacity calculated for Cd was 135.28 mg/g. The synthesis of a humic acid-layered double hydroxide (HA-LDH) hybrid was performed by Shi et al. [22] for the remediation of contaminated soils in mining area. In order to investigate the effect of HA-LDH on the mine soil, greenhouse experiments of Artemisia ordosica were carried out under different concentrations of amendments. By The HA-LDH and Artemisia ordosica could effectively decrease the bioavailability of heavy metals (such as Pb, Cr, Ni, Cd, Zn, and As) in the mine soil, and improve the enzyme activities of β-glucosidase, urease, and phosphatase. The authors conclude that the calcined phase has a higher adsorption capacity (375 mg/g) compared to the non-calcined phase. The elimination of Congo red, an anionic dye, by an anionic clay of Mg–Al type has been investigated by Lafi et al. [23]. The authors conclude that the adsorption kinetics correspond to a pseudo-second-order model and the isotherms to Langmuir model. They suggest that electrostatic attraction controls the adsorption of Congo red on Mg–Al phase. Chitrakar et al. [24] studied the adsorption of seawater phosphate on hydrotalcite of Mg–Mn-300 type obtained after calcination at 573 K with a molar ratio of 3. Moreover, the adsorbent exhibits a high chemical stability during adsorption–desorption cycle since it retains a high phosphate adsorption after several cycles. It can be concluded that hydrotalcites (LDH) are efficient adsorbents for depollution. In the present work, SDS based organophilic LDH, calcined at 773 K are used for the elimination of humic acid from seawater. A particular interest is given to the investigation of kinetic and thermodynamic equilibrium as well as adsorption thermodynamics to provide a description of the fixation mode using recently proposed multi-parameters adsorption models.

2. Materials and methods

2.1. Materials

Sodium dodecylsulfate (SDS, 0.1 M), HCL (0.1 M), NaOH (0.1 M), MgCl2·6H2O, Na2CO3, and FeCl3·6H2O. All reactants from Panreac Qimica SA Castellar del Valles Barcelona, Espana.

2.2. Preparation of adsorbents

2.2.1. Synthesis of Mg–Fe–CO3 phase

Mg–Fe phase with a ratio of Mg/Fe = 2 was prepared by adding a basic solution of NaOH (2 M) and Na2CO3 (1 M) to a mixture of two salts, namely MgCl2·6H2O (0.66 M) and FeCl3·6H2O (0.33 M). Optimum parameters that would lead to crystallized LDH consist of pH = 10, a temperature of 298 K, and a mixing time of 6 h. The resulting suspension is mixed overnight to enhance material crystallization followed by washing, drying at 338 K, and grinding to obtain Mg–Fe–CO3. Subsequently, LDH are calcined at 773 K during 5 h to improve structural properties and texture, then a decarbonation and dehydration to obtain Mg–Fe–C with enhanced anionic exchange properties [25].

2.2.2. Preparation of organophilic LDH

Calcined LDH were added to a solution of surfactant, namely sodium dodecylsulfate (SDS, 0.1 M) with solid to solution ratio equal to 1 g/50 mL. The mixture constantly mixed and heated up to 338 K in an oil bath, while maintaining nitrogen reflux to minimize CO2 amount in the solution.
2.2.3. Preparation of humic acids

Commercially available humic acid (Acros) is used in the experiments. A solution with a concentration of 1 g/L is prepared by dissolving 1 g of humic acid in 62.5 mL of NaOH solution (2 N), followed by addition of distilled water to obtain 1 L of solution. The latter is mixed during 24 h then filtered through a 45 µm filter and finally protected from light and kept at a temperature of 277 K [2, 27].

2.3. Characterization

The samples isoelectric points are determined using the methodology described by Benhouria et al. [28]. In each Erlenmeyer flask, 50 mg of adsorbant are added to 50 mL of distilled water for a pH ranging between 2 and 12. The pH of each solution is adjusted by adding HCl or NaOH (0.01 M). The final pH is measured after 24 h of mixing. Morphological analysis using X-ray diffraction (XRD) is carried out using Bruker D8 diffractometer (40 kV, 30 mA), operating under copper monochromatic radiation (\(\lambda_{Cu} = 1.5406 \text{ Å} \)). The domain of the 20 angle observed ranges between 276 and 343 K. FTIR absorption spectra are recorded between 4,000 and 400 cm\(^{-1}\), using a Fourier transform infrared spectrometer (FTIR) SHIMADZU FTIR 8400, with a resolution of 4 cm\(^{-1}\). Texture measurement is performed using equipment of type accelerated surface area and porosimetry system (ASAP) 2010 (samples are degassed at 473 K and 0.1 Pa during 12 h before the adsorption analysis). Powder morphology was observed using Philips scanning electron microscopy (SEM) under 15 kV, which enables magnification of 30,000.

2.4. Effect of pH on adsorption

pH represents an important parameter for the adsorption process. It affects the charge of the adsorbent surface and the ionization of different functional groups as well as the adsorbate. The investigation of humic acid adsorption onto materials in seawater is carried out under pH values which enables magnification of 30,000.

2.5. Adsorption kinetics of humic acid

The investigation of the kinetics of adsorption of a component onto an adsorbent enables to assess the influence of contact time on the adsorbed quantity [Eq. (1)]. The main objective of this research is to evaluate the time necessary to reach adsorption equilibrium for different concentrations. All results obtained are reported on a \(Q_i = f(t)\) plot with:

\[
Q_i = \frac{(C_0 - C_t)V}{m}
\]

where \(C_0\) is the initial concentration fo humic acid AH (mg/L), \(C_t\) is the residual concentration at time \(t\) (mg/L), \(V\) is the volume of the aqueous solution (L), and \(m\) the mass of clay (g).

2.6. Adsorption isotherm

Adsorption isotherms are drawn at room temperature using suspensions with 10 mg of adsorbent in 10 mL solutions with increasing humic acid concentration. The suspensions with pH = 5 are agitated during 6 h then centrifuged. The total equilibrium concentration of humic acid \((C_i)\) is measured from the supernatant.

\[
Q = \frac{(C_0 - C_e)V}{m}
\]

where \(C_e\) is the initial concentration of humic acid (mg/L), \(C_i\) is the residual equilibrium concentration (mg/L), \(V\) is the volume of the aqueous solution (L), and \(m\) is the mass of clay.

3. Results and discussions

3.1. Materials characterization

Results obtained from isoelectric points are reported on a \(\Delta pH = f(\text{pH})\) plot (Fig. 1) where \(\Delta pH = (\text{pH}_i - \text{pH}_f)\). The x-axis intercept of the curve indicates the value \(\text{pH}_{PZC}\). The values of \(\text{pH}_{PZC}\) for Mg–Fe–SDS and Mg–Fe–C phases are 8.85 and 10.7, respectively [29].

Diffractograms of Mg–Fe–CO\(_3\) sample, before calcination, after calcination, and after exchange by SDS are represented in Fig. 2. XRD results for Mg–Fe–CO\(_3\) are typical of those of LDH structures encountered in the literature [30–32]. These symmetrical peaks at (003), (006), and (009), as well as asymmetrical at (015), (018), (110), and (113) indicate that our product is crystallized and similar to those reported in the literature [30]. Mg–Fe–C shows that calcination modifies the crystalline structure of LDHs by causing dehydration, dihydroxylation, and decarboxylation. Mixed oxides of MgO type are also formed at 20 = 42°, 93°, 62°, and 22°. These oxides, which are formed after calcination, are weakly crystallized and exhibit peak broadening on the XRD diagram in accordance with available literature [30–32]. After intercalation of SDS surfactant (Fig. 2), the crystalline structure reappears (memory effect) and shows characteristic peaks that correspond to initial LDH reflections. However, peak broadening points out, to some extent, a loss of crystallinity. The presence of SDS surfactant caused peak displacement towards small angles. The intertetrical distances between (003) and (110) absorption bands allow the calculation of parameters \(a\) and \(c\) using \(a = 2 \times d (110)\) and \(c = 3 \times d (003)\). The intertetrical distance of (003) band corresponds to the intersheet space while the absorption band (110) represents half the metal-metal distance in the sheet. The XRD parameters of the different samples are given in Table 1. All results are in accordance with reported values from the literature [30, 31].

Mg–Fe–CO\(_3\) diagram (Fig. 3) shows a wide band at ~3,440 cm\(^{-1}\), which corresponds to a stretching vibration of lamellar hydroxide groups bonded to different metals [30, 32]. A small vibration band observed at ~3,000 cm\(^{-1}\)corresponds to the stretching of water molecules [15, 33]. A vibration band, observed at ~1,630 cm\(^{-1}\), can be attributed to the deformation of interposed water molecules [30–32]. A vibration band around 1,353 cm\(^{-1}\)corresponds to asymmetric stretching of
interlamellar carbonates (CO$_3^{2-}$) [30,31]. Vibration bands in the range 800–500 cm$^{-1}$ are attributed to valence vibrations of Mg–O, Fe–O [15,30,31,34]. IR spectra of calcined LDH at 773 K are represented in Fig. 3. Profiles analysis reveal a significant decrease in bands intensity at ~3,440 and ~1,630 cm$^{-1}$, which corresponds to a dihydroxylation and dehydration. Moreover, the disappearance of absorption peaks at ~3,000 and ~1,000 cm$^{-1}$ can be attributed to surface decarboxylation.

This phenomenon can lead to a decrease of the interlamellar distance. The presence of SDS ions in the interfoliar space is represented by the two peaks at ~2,909 and ~2,844 cm$^{-1}$ for the Mg–Fe–SDS phase. These two peaks characterize both symmetric and asymmetric stretching of C–H bond that belongs to the linear chain of interposed SDS. The presence of sulfonate groups at ~1,053 cm$^{-1}$ (ν(S=O) asymmetric) and ~1,193 cm$^{-1}$ (ν(S=O) symmetric) is also noticeable [35–37]. When anionic surfactants like dodecylsulfate are intercalated to LDH, the space between layers increases, and alteration of interlayer superficial properties from hydrophilic to hydrophobic occur. The hydrophobic nature and accessibility of the interlayer region of organocomposites make these materials promising candidates for adsorption of non-ionic organic pollutants. Anions (An$^-$) and interlayered water molecules can be exchanged for other anions, which makes LDH good anionic exchangers [35,38]. The adsorbent property of the LDH surface can be modified through the exchange of inorganic interlayered anions for organic anions such as anionic surfactants. We have used the anionic surfactant for the type of interaction that could exist between our materials and HA, interactions are of type electrostatic between the negatively charged sulfonate groups and the positive charges of HDL [35].

Nitrogen adsorption and desorption isotherms of calcined and non-calcined LDH at 77 K are represented in Fig. 4. The isotherms are of type IV following BDET (Brunauer, Deming, Emmet, and Teller) classification and the hysteresis loops are of type H3. This adsorption isotherm is obtained with mesoporous adsorbents in which capillary condensation occurs [30]. It is observed from Table 2 that Brunauer–Emmett–Teller (BET) surfaces of calcined samples are greater than those of non-calcined samples, which is attributed to thermal treatment of the samples at 773 K. The elimination of water (dehydration) and carbon dioxide (decarbonation) during calcination can lead to channels and pores formation, which increases specific surface area of calcined samples in accordance with results from the literature [34,39]. The results obtained are in accordance.

SEM images show that non-calcined LDH are highly crystalline and reveal small porous particles in the shape
of platelets of average size. These particles are connected to each other in a textured arrangement [14]. Materials EDX elemental composition, illustrated by spectra of Fig. 5, shows the presence of different amounts of magnesium, iron, oxygen, and carbon. Regarding Mg–Fe–C, a decrease in oxygen and carbon is noticed which corresponds to surface dihydroxylation, dehydration, and decarboxylation, suggesting that calcination modifies LDH crystalline structure. These results confirm those obtained by XRD.

3.2. Effect of pH on adsorption

Carboxylic and phenolic groups confer to humic acid molecule a negative charge in aqueous solution. The adsorption of humic acid increases when pH is increased from 3 to 5 followed by a decrease for higher pH (Fig. 6). This is because the support attracts ions when pH values are lower than pHpzc [15], while for pH values higher than pHpzc, the support attracts cations. Therefore, when pH is high, there is repulsion with the anionic humic acid, which causes a decrease in adsorption further penalized by competition of humic acid ions with OH− [2].

3.3. Effect of ionic force

The amount of humic acid adsorbed as a function of ions concentration in the solution (NaCl) is shown in Fig. 7. The investigation was carried out under the following operating conditions: C0 = 10 mg/L, pH = 5, T = 298 K, V = 10 mL, m = 10 mg, V agitation = 200 tr/min. The adsorbed quantity for Mg–Fe–C decreases with the increase of the ionic force from 10−3 to 5.10−1 mol/L. This is attributed to two knowns causes [6,40], Firstly a competition between inorganic electrolyte (Cl−) and humic acid adsorption on internal and external surfaces. Secondly, an increase in electrostatic attraction and ionic exchange between Cl− ions, surface functions, and interlayer anions caused by an increase of the ionic force.

NaCl has a weak effect during the adsorption of humic acid onto Mg–Fe–SDS for a humic acid concentration of 10 mg/L (Fig. 7). However, an increase of NaCl concentration causes a slight decrease in the percentage of elimination of humic acid. Nevertheless, an increase of the ionic force can cause a decrease in the molecular volume of humic acid due to the minimization of electrostatic repulsion between ionized oxygen groups [41,42]. Relatively small molecules are readily dispersed in the organic phase formed by long alkyl chains of dodecylsulfonate ions in the intermediate layer of organo-LDH [7].

3.4. Adsorption kinetics

Lagergren [43] proposed a first-order model that gives the evolution of adsorbed solute in time, viz:

\[Q_t = Q_e \left(1 - e^{-kt} \right) \]

where \(k_1 \) represents the kinetic constant of the pseudo-first-order model (min−1); \(Q_t \) is the instantaneous adsorption capacity (mg g−1); \(Q_e \) is the equilibrium adsorption capacity (mg g−1) and \(t \) is the time (min).

The pseudo-second-order equation was successfully used to describe adsorption kinetics of pollutants [44], viz:

\[\frac{t}{Q_t} = \frac{1}{k_2Q_e^2} + \frac{t}{Q_e} \]

where \(Q_t \) is the instantaneous adsorption capacity (mg g−1); \(Q_e \) is the equilibrium adsorption capacity (mg g−1); \(k_2 \) is the kinetic constant of pseudo-second-order model (g/mg min) and \(t \) is the time (min).

Intraparticle diffusion is generally expressed using Morris–Weber equation [45]:

\[Q_t = K_d^\frac{t}{2} + C \]

With \(K_d \) the interparticle diffusion constant (mg/g min0.5) or (mmol/g min0.5); \(C \) is the y-axis intercept which represents the thickness of the boundary layer.

Comparison of the different models (Table 3) shows that the n-order (\(n \in \mathbb{R} \), \(n \neq 1 \) model gives the best fit of experimental data. Indeed, with a coefficient of determination \(r^2 = 0.99 \) and a negligible root mean square error, this model gives the best description of the adsorption process of humic acid on LDHs (Fig. 8). The model suggests an adsorption with charge interaction between adsorbent and adsorbate, a complex phenomenon that cannot be represented by a single parameter. Moreover, the calculated adsorbed amounts are in accordance with experimental values. Nevertheless, an order of 2 can be used as a first approximation during investigations of humic acid adsorption.

The model of intraparticle diffusion is used to further assess the adsorption mechanism of humic acid on
Fig. 5. SEM micrographs of prepared materials (a) Mg–Fe–CO$_3$ and (b) Mg–Fe–C.

Fig. 6. Effect of pH on the adsorption of humic acid on prepared clays ($C_0 = 10$ mg/L, $T = 298$ K, and $t = 5$ h).

Fig. 7. Effect of ionic force on the adsorption of humic acid on LDHs in distilled water.
different materials. The amount adsorbed (Q_t) as a function of ($t^{0.5}$) for all samples exhibits three linear portions that do not cross the origin. This confirms that the intraparticle diffusion follows Morris–Weber model. However, intraparticular diffusion occurs simultaneously with other diffusion mechanisms. As can be seen in Fig. 9, the first sharper step was not observed and completed before 10 min, which may be considered as the external surface adsorption. The second linear portion corresponds the intra-particle diffusion and binding of molecules into the internal active sites of the LDH. Finally, the third linear portion indicated a saturation of the adsorption process [17,46].

The calculation of the parameters related to each model was carried out on MATLAB using genetic algorithms.

3.5. Adsorption isotherm

Langmuir isotherm has been used for the adsorption of a monolayer of solute onto a surface with finite number of identical sites. It assumes that adsorption energy is uniform over the entire surface [12,47]. It is generally expressed as:

$$Q = \frac{Q_m K_a C}{1 + K_a C}$$

(6)

with K_a the equilibrium constant, and Q_m the maximum adsorption capacity.

On the other hand, Freundlich model describes the adsorption equilibrium of solutes on heterogeneous surfaces. Therefore, this model assumes the presence of different types of adsorption sites and that solute adsorption can occur in a multilayer fashion. The model is generally described by the following equation [10,12]:

$$Q = K f C$$

(7)

with Q, the adsorbed amount (mg/g), C is the equilibrium concentration (mg L$^{-1}$), K_f is the Freundlich coefficient, n is the solute affinity for the adsorbent.

Regarding Sips model, it extends Freundlich model to reach a limit for high concentrations [30]:

$$Q = \frac{Q_m K S}{1 + K S}$$

(8)

where K_s is Sips equilibrium constant (L/mmol), m_s is Sips model exponent.

By adjusting the experimental points on the different new models proposed with several parameters, and based on the values of the coefficient r^2 and RMSE, it appears that the values of the coefficient of correlations r^2 approaches unity and the RMSE tends toward zero, which clearly shows the precision of the models proposed compared to the Freundlich and Langmuir models. We also note that the adsorption process of HA on different materials is better presented by the proposed model (04) with four parameters (Table 4).

The adsorption of humic acids onto LDHs occurred by ion exchange with both the intercalated and surface anions of the LDH and ligand exchange reactions with surface groups. Lower molecular weight humic were preferentially adsorbed because these fractions can more easily enter the mesoporous LDHs and contain more carboxylic groups, which are known to be involved in ligand exchange reactions with, for example, surface groups. Intercalation of the entire HA molecules in-between the LDH sheets is
unlikely to occur [48]. Curves of Fig. 10 shows the fitting of experimental data with these different models. The adsorption process of humic acid is well represented by the four parameters mode. Parameters calculation was performed on MATLAB using genetic algorithms.

3.6. Calculation of the effective diffusion coefficient and energy activation of adsorption for spherical adsorbent particles

In the absence of homogeneous chemical reaction, the unidimensional transient diffusion process of species \(A \) with a constant effective diffusion coefficient \(D_{e} \), in a homogeneous isotropic spherical adsorbent grain of radius \(a \), can be written as:

\[
\frac{1}{a^2} \frac{\partial}{\partial a} \left(a^2 D_{e} \frac{\partial C_a}{\partial a} \right) - \frac{\partial C_a}{\partial t} = 0
\]

(9)

Subject to the following boundary conditions:
\[C_a(0,a) = C_0 = 0, \quad C_a(t,a) = C_{API} = C_{API0} and \quad C_a(t,0) = C_a = 0. \]

With \(C_0 \), the concentration at the grain surface and \(C_{API0} \) the initial concentration of the solution.

The analytical solution of Eq. (9) subject to the above-mentioned boundary conditions is given by the method of separation of variables in the form of Fourier series, viz:

\[
\frac{Q_{ad}(t)}{Q_{max}(t)} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp \left(-\frac{n^2 D_{e} \pi^2}{a^2} t \right)
\]

(10)

Where \(t \) represents the adsorption time and \(n \) is a positive integer.

Neglecting high order terms, Eq. (10) can be rewritten as:

\[
\left(1 - \frac{Q_{ad}(t)}{Q_{max}(t)} \right) = 6 \pi^2 \exp \left(-\frac{D_{e} \pi^2}{a^2} t \right)
\]

(11)

Using logarithms on both sides of the Eq. (11):

\[
\ln \left(1 - \frac{Q_{ad}(t)}{Q_{max}(t)} \right) = \ln \left(\frac{6 \pi^2}{D_{e} \pi^2} \right) - \left(\frac{D_{e} \pi^2}{a^2} \right) t
\]

(12)
Table 4
Constants of adsorption isotherms of humic acid on different materials

<table>
<thead>
<tr>
<th>Models</th>
<th>Parameters</th>
<th>Mg–Fe–SDS</th>
<th>Mg–Fe–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freundlich</td>
<td>RMSE</td>
<td>7.269</td>
<td>9.3987</td>
</tr>
<tr>
<td>Qe = (K_f C_e^{1/n})</td>
<td>r²</td>
<td>0.9805</td>
<td>0.9409</td>
</tr>
<tr>
<td></td>
<td>(K_f)</td>
<td>9.765</td>
<td>5.5297</td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>0.568</td>
<td>0.6552</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>153.9394</td>
<td>124.3548</td>
</tr>
<tr>
<td>Langmuir</td>
<td>RMSE</td>
<td>13.631</td>
<td>16.1161</td>
</tr>
<tr>
<td>(Q = \frac{Q_m K_L C_e}{1 + K_L C_e})</td>
<td>r²</td>
<td>0.9535</td>
<td>0.8844</td>
</tr>
<tr>
<td></td>
<td>(K_L)</td>
<td>0.0402</td>
<td>0.0394</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>121.4834</td>
<td>90.23075</td>
</tr>
<tr>
<td>Sips</td>
<td>RMSE</td>
<td>6.9034</td>
<td>6.8806</td>
</tr>
<tr>
<td>(Q = \frac{Q_m K_s C_e}{1 + K_s C_e})</td>
<td>r²</td>
<td>0.9894</td>
<td>0.9712</td>
</tr>
<tr>
<td></td>
<td>(K_s)</td>
<td>0.0036</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>1.6746</td>
<td>2.5072</td>
</tr>
<tr>
<td>Proposed model 1</td>
<td>RMSE</td>
<td>4.4649</td>
<td>5.6142</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = (1 - \exp(-a C_e^n))^{1/2})</td>
<td>r²</td>
<td>0.996</td>
<td>0.9835</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>2.5629 \times 10^{-04}</td>
<td>2.8598 \times 10^{-04}</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>141.95</td>
<td>108.7987</td>
</tr>
<tr>
<td>Proposed model 2</td>
<td>RMSE</td>
<td>4.4377</td>
<td>4.9791</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = b (1 - \exp(-a C_e^n))^{1/2})</td>
<td>r²</td>
<td>0.9956</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>0.0003</td>
<td>2.356 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>0.9904</td>
<td>1.0685</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>140.74</td>
<td>115.0008</td>
</tr>
<tr>
<td>Proposed model 3</td>
<td>RMSE</td>
<td>2.9411</td>
<td>3.7993</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = b (1 - \exp(-a C_e^n)))</td>
<td>r²</td>
<td>0.997</td>
<td>0.9904</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>0.0008</td>
<td>4.9814 \times 10^{-5}</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>1.041</td>
<td>1.0232</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>1.6839</td>
<td>2.4518</td>
</tr>
<tr>
<td>Proposed model 4</td>
<td>RMSE</td>
<td>2.684</td>
<td>3.212</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = b (1 - \exp(-a C_e^n)))</td>
<td>r²</td>
<td>0.9973</td>
<td>0.9927</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>1.0035 \times 10^{-23}</td>
<td>1.1699 \times 10^{-23}</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>1.0144</td>
<td>1.0021</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>0.281</td>
<td>0.2762</td>
</tr>
<tr>
<td>Proposed model 5</td>
<td>RMSE</td>
<td>4.4303</td>
<td>4.7171</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = 1 - \exp(-a C_e^n))</td>
<td>r²</td>
<td>0.9936</td>
<td>0.9856</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>0.015</td>
<td>0.0026</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>1.1207</td>
<td>1.6066</td>
</tr>
<tr>
<td>Proposed model 6</td>
<td>RMSE</td>
<td>6.9034</td>
<td>6.8806</td>
</tr>
<tr>
<td>(\frac{Q}{Q_m} = (a C_e^n)/(1 + a C_e^n))</td>
<td>r²</td>
<td>0.9849</td>
<td>0.9712</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>0.0036</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>(Q_m)</td>
<td>1.6746</td>
<td>2.5071</td>
</tr>
<tr>
<td>Experimental values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_m) (exp) (mg/g)</td>
<td></td>
<td>142.33</td>
<td>109.32</td>
</tr>
</tbody>
</table>
Plotting \(\frac{1 - Q_e(t)}{Q_{\text{max}}(t)} \) against \(t \), gives a straight line with a slope \(\beta = \frac{D_a \pi^2}{a^2} \), which leads to a diffusion coefficient \(D_a = \frac{\beta a^2}{\pi^2} \).

3.7. Calculation of the activation energy

It is assumed that the effective diffusion coefficient varies with temperature following an Arrhenius type equation, viz.

\[
D_a = D_0 \exp\left(-\frac{E_a}{R T}\right)
\]

where \(D_0 \) is the Arrhenius pre-exponential factor, \(E_a \) is the activation energy of migration of adsorbate species \((A) \). This energy characterizes the barrier to be overcome for species diffusion to occur at temperature \((K) \).

Using logarithms on both sides of Eq. (13) leads to:

\[
\ln(D_a) = \ln(D_0) - \frac{E_a}{R T}
\]

The activation energy \((E_a) \) is obtained from the slope of \(\ln(D_a) = f(1/T) \) line. It is important to note that the weaker \(E_a \) the more efficient the adsorption.

The activation energy for each material can be calculated from values of the diffusion coefficient. This energy gives insight into whether the adsorption is chemical or physical. Results suggest that the adsorption process of humic acid is chemical for organophilic Mg–Fe and for Mg–Fe–C phase, with an activation energy of 28.26 kJ/mol and 32.73 kJ/mol, respectively. Similar results were reported by Santosa et al. [49] and Guo et al. [30]. Moreover, it is noticed that values of \(D_a \) lie within the range \((10^{-13} - 10^{-9}) \) m²/s, and the higher the diffusion coefficient the more efficient the adsorption.

3.8. Effect of temperature on the adsorption process

The effect of temperature on the adsorption process was investigated by increasing temperature up to 313 K. As shown in Fig. 11, increasing the temperature causes an increase of the adsorbed amount of humic acid on both materials. Therefore, the adsorption process is endothermic, favored by relatively elevated temperatures [2].

3.9. Calculation of thermodynamic parameters

Values of Gibbs free energy \((\Delta G^0) \) of adsorption were calculated from enthalpy \((\Delta H^0) \) and entropy values,
obtained from log($K_d \times 1,000$) = $f(1/T)$ plots of the following equations:

$$\Delta G^o = RT \ln K_d$$ \hspace{1cm} (15)

$$\ln K_d = \frac{\Delta S^o}{T} - \frac{\Delta H^o}{RT}$$ \hspace{1cm} (16)

$$\Delta G^o = \Delta H^o - T\Delta S^o$$ \hspace{1cm} (17)

where K_d is the affinity of adsorption, and R the ideal gas constant.

Values of free energy ΔG^o_{ads} reported in Table 5, suggest that the process is spontaneous while positive values of enthalpy ΔH^o shows that the process is endothermic favored by increasing temperature (Fig. 12). Positive values of entropy ΔS^o_{ads} show that LDH-adsorbate system is less ordered that the molecules of adsorbate in the liquid phase [2,31].

After absorption the spectrum of HA/Mg–Fe–SDS (Fig. 13) has peaks at 1,520.8 cm$^{-1}$ [50], which are likely the stretching vibrations of –COO–. The bands at 1,435.5 and 1,150.0 cm$^{-1}$ correspond to –COO– vibrations and C–O stretching vibrations, respectively [51]. The peaks at 790.3 cm$^{-1}$ represent the aromatic C–H stretching vibrations [21,49]. In addition, the bands at 672.5, 610.0, and 558.8 cm$^{-1}$, which are located in the region of 450–750 cm$^{-1}$, all represented Al–O and Mg–O vibrations [22]. The vibration bands at 419.8 cm$^{-1}$ appeared for the HA/Mg–Fe–SDS, corresponding to the aromatic C–H vibration, which may be derived from humic acid at 452.6 cm$^{-1}$ [22]. These results indicated that the absorption of humic acid on the surface and layer of Mg–Fe–SDS had occurred, and the interactions such as van der Waals forces, hydrogen bonding, and electrostatic attraction had existed between the Mg–Fe–SDS layers and humic acid molecules.

The morphological features of the Mg–Fe–SDS after sorption of humic acid are shown in Fig. 14. After the sorption of HA, the material aggregated; the layer thickness increased obviously, and the material formed a shale-like layered structure. It also can be seen from Fig. 14 that there are some plate-like areas left on the surface, which are similar to the raw Mg–Fe–SDS. This may because the sorption was unsaturated, leaving some areas unoccupied by HA [7]. According to the literature, the different types of interactions between surfactants and surface of LDHs are the first type (type I) are electrostatic forces between the positive charges of LDH and the negative charges of sulfonate groups of the surfactant. The second type is the interactions of the bond hydrogen between the sulfonate

Table 5
Thermodynamic parameters ΔH^o, ΔS^o, and ΔG^o related to the adsorption of Mg–Fe–SDS and Mg–Fe–C

<table>
<thead>
<tr>
<th>Samples</th>
<th>Temperature (K)</th>
<th>ΔG^o (kJ/mol)</th>
<th>ΔH^o (kJ/mol)</th>
<th>ΔS^o (kJ/mol k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg–Fe–SDS</td>
<td>283</td>
<td>–16.42</td>
<td>47.98</td>
<td>22.75</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>–18.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>–20.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>–23.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg–Fe–C</td>
<td>283</td>
<td>–16.02</td>
<td>48.83</td>
<td>22.91</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>–18.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>–20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>–22.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6
Comparison of monolayer adsorption of HA onto various adsorbents

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>q_{max} (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg/Fe layered double hydroxide</td>
<td>76.70</td>
<td>[6]</td>
</tr>
<tr>
<td>Palygorskite</td>
<td>17</td>
<td>[53]</td>
</tr>
<tr>
<td>Acid-activated Greek bentonite</td>
<td>12.062</td>
<td>[41]</td>
</tr>
<tr>
<td>Polyamine/attapulgite composite</td>
<td>61.35</td>
<td>[54]</td>
</tr>
<tr>
<td>Crosslinked chitosan-epichlorohydrin beads</td>
<td>44.84</td>
<td>[55]</td>
</tr>
<tr>
<td>Chitosan treated granular activated carbon</td>
<td>71.4</td>
<td>[56]</td>
</tr>
<tr>
<td>Hexadecyltrimethyl ammonium bromide (HTAB)-modified</td>
<td>126.6</td>
<td>[57]</td>
</tr>
<tr>
<td>Mg/Al layered double hydroxide</td>
<td>69</td>
<td>[49]</td>
</tr>
<tr>
<td>HDL–DSO</td>
<td>594.3</td>
<td>[7]</td>
</tr>
<tr>
<td>Mg–Fe–SDS</td>
<td>142.33</td>
<td>This study</td>
</tr>
<tr>
<td>Mg–Fe–C</td>
<td>109.32</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 13. FTIR spectra after adsorption of HA/Mg–Fe–SDS (a) and humic acid (b).

Fig. 14. Scanning electron micrographs of (a) Mg–Fe–SDS after sorption of HA and (b) humic acid.

Fig. 15. Histogram of materials regeneration in seawater ($C_0 = 10$ mg/L and $T = 298$ K).
groups and the hydroxyl groups of LDH (type II) which is combined with hydrophobic interactions between the CH₂ groups of the surfactant (type III) [52].

3.10. Regeneration

Regeneration of the adsorbent is an important economical factor in treatment processes. Focus is generally set on the regeneration mechanism and recycling of adsorbents charged with pollutants. Small quantities of humic acid adsorbed on calcined LDH and organophilic LDH at high pH imply that the adsorbent charged with humic acid can be desorbed in alkaline medium. A regeneration analysis was carried out after adsorption using NaOH 0.1 M [3] and the materials obtained were reused for adsorption. The throughput of the elimination process was determined after several experiments. After each cycle, the adsorbed quantity is calculated using Eq. (1) with \(C_0 = 10 \text{ mg/L} \). The results of regeneration are reported in the histogram of Fig. 15. It is noted that after the first cycle, the adsorption capacity of humic acid decreases from 80% to 76% compared to the original Mg–Fe–SDS and from 75% to 67% compared to original Mg–Fe–C. Therefore, the decrease in adsorption capacity is low, which gives the materials an excellent regeneration property.

4. Conclusion

Materials characterization confirmed successful synthesis of LDHs. Results of infrared spectra showed LDH characteristic bands with carbonate anions interposed in the interlamellar spacing. Thermal treatment confers to the material a relatively high specific surface. SEM and XRD characterization results show that LDH are crystalline. This crystalline structure reappears (memory effect) after interposing SDS surfactant in LDHs with characteristic peaks that correspond to initial LDH reflections with a slight modification of crystallinity.

Results show that pseudo-first-order kinetic model is valid at early stages of the adsorption process, while the pseudo-second-order model gives better results. However, the best fit of the experimental results was obtained using the n-order model \((n \in R) \) \(n \neq 1 \) with a determination coefficient close to one. Models of adsorption isotherms that were proposed, particularly 4 parameters model, give better results than classical Freundlich, Langmuir, and Sips models. Calculated effective diffusion coefficient and activation energies are in accordance with values reported in the literature. A thermodynamics analysis enabled the calculation of enthalpy, entropy, and free energy of adsorption and showed that the adsorption process is chemical, spontaneous, and endothermic (Table 6). Finally, the prepared materials were regenerated and reused successfully in several successive adsorption cycles.

References

Y. You, H. Zhao, G.F. Vance, Surfactant-enhanced adsorption
W.T. Reichle, Synthesis of anionic clay minerals (mixed metal
R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi,
R. Lafi, K. Charradi, M.A. Djebbi, A.B. Haj Amara, A. Hafiane, Organo/LDH nano-
P. Zhang, T. Wang, G. Qian, D. Wu, R.L. Frost, Effective
X. Ruan, S. Huang, H. Chen, G. Qian, Sorption of aqueous
L.D.L. Miranda, C.R. Bellato, M.F. de Almeida, Calcined layered Mg−Fe−CO