Comparative study of photocatalytic activity of nanocomposites prepared from biological wastes and ZnO nanoparticles

Chahrazed Djilani a,c,*, Rachida Zaghdoudi b,c, Fayçal Djazi a,c, Abdelaziz Lallam d, Bachir Bouchekima e, Pierre Magri f

a Faculté de Technologie, Université du 20 Août 1955, B.P 26 Skikda 21000, Algeria, Tel. +213 79 16 65 403; email: chahrazed_dj@yahoo.fr (C. Djilani)
b Faculté des Sciences, Université du 20 Août 1955, B.P 26 Skikda 21000, Algeria, Tel. +213 55 88 72 108; email: zeg_rach@yahoo.fr
c Laboratoire LRPCSI, Université du 20 Août 1955, B.P 26 Skikda 21000, Algeria, Tel. +213 77 15 31 29; email: djazi_faycal@yahoo.fr (F. Djazi)
d Laboratoire de Physique et Mécanique Textiles de l’ENSISA (LPMT), Université de Haute Alsace, 11 rue Alfred Werner, F 68093 Mulhouse CEDEX, France, Tel. +33 3 89 33 69 00; email: abdelaziz.lallam@uha.fr
e Laboratoire de Développement des Energies Renouvelables (LENREZA), Université Kasdi Merbah, B.P 511 Ouargla 30000, Algeria, Tel. +213 77 37 25 99; email: boucbachir@yahoo.fr
f LCP-A2MC, EA4164, Université de Lorraine, 1, bd Arago-57078 Metz, cedex3, France, Tel. +33 3 87 31 54 33; email: pierre.magri@univ-lorraine.fr

Received 5 August 2020; Accepted 5 January 2021

Abstract

In this study, binary chitosan/zinc oxide (CS/ZnO) nanocomposite, ternary chitosan/activated carbon prepared from apricot stones/zinc oxide (CS/ACAS/ZnO) and chitosan/activated carbon prepared from animal bones/zinc oxide (CS/ACAB/ZnO) nanocomposites were synthesized for the comparative photocatalytic study of methylene blue dye in simulated contaminated water. The prepared CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites were systematically characterized using X-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. High rates of degradations were observed for CS/ACAS/ZnO (97%, 40 min) followed by CS/ACAB/ZnO (92%, 80 min) at initial pH, with an adsorbent dose of 100 mg at room temperature and for an initial concentration of 10 mg/L methylene blue. After comparison, the CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites exhibited the best photocatalytic performance for the methylene blue degradation under visible light irradiation. The kinetics of pseudo-first-order and pseudo-second-order models were checked to evaluate the photocatalytic performances of the considered nanocomposites. The results confirmed the successful incorporation of ZnO nanoparticles onto CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites and demonstrated that the use of activated carbons as a support for ZnO is a viable alternative and present a great interest for photocatalysis.

Keywords: Methylene blue; Zinc oxide; Nanocomposites; Photodegradation; Biological wastes

1. Introduction

Dyes are among the synthetic organic compounds which are widely used in the textile, leather, paint, paper, ink, printing, food, plastics and cosmetics industries. They are common pollutants in wastewaters due to their extensive use in various industries [1–3]. Dyeing waste showed highest level of toxicity followed by industrial waste, livestock waste and leather industrial waste [4]. Synthetic dyes are a significant class of organic pollutants that are released directly into the environment as wastewater from their
industries [5]. This industrial wastewater enters the aquatic environment and leads to the generation of carcinogenic, cytogenetic, mutagenic, allergenic and toxic hazards for various organisms [6,7]. Dyes are typically classified into cationic dyes, anionic dyes and non-ionic dyes based on the charge of the chromophore group dissolved in the aqueous solution [8]. Methylene blue (MB) is a well-known cationic dye used as a colorant dye that is regularly applied for staining silk, wool, hemp, acrylic, cotton and as biological staining procedures [9,10]. The presence of MB in wastewater has some side effects, including burning eyes, nausea, diarrhea, and vomiting [2].

Several methods such as coagulation–flocculation aerobic or anaerobic treatment, electrochemical treatment, membrane filtration, photocatalytic degradation and adsorption have been adopted as prominent choices for the improvement of water quality through eliminating or removing dyes pollutants [11–16]. Adsorption has been found to be an efficient method for the removal of dyes from effluents, due to the effectiveness, high selectivity, easy-to-use, regeneration capability, low operating, non-toxicity and simplicity of the process [17,18]. Until now, many adsorbents such as activated carbons [19], magnetic carbon nanotubes [20] and composite hydrogels [21] have been successfully used for the removal of methylene blue from water. The principal disadvantage of adsorption methods is to create secondary pollution [22]. However, the photocatalysis method exhibits superior results for the removal of dyes and other complex pollutants from wastewater and environmental purification, in comparison with other techniques [1]. Compared with adsorption, the photocatalytic process is considered as one of the most promising and green technologies for eliminating organic contaminants because of its high efficiency for mineralization of dyes, the easy preparation of the catalyst, the absence of secondary pollution and finally the feasibility with light irradiation [23,24]. Consequently, the combination of adsorption and photocatalysis processes has been presented/introduced to enhance pollutant removal [25,26]. The photocatalysts and their photocatalytic performance for the degradation of organic dyes have been systematically investigated [27]. Generally, conventional non-porous semiconductor metal oxides, such as TiO2, zinc oxide (ZnO), SnO2, etc., are considered to be promising photocatalysts [42]. Methylene blue (MB) is a low-cost and non-toxic material that is considered an adsorbent for pollutant removal due to its high surface area, highly microporosity, high catalytic activity, surface chemical properties and thermal stability [9,45]. Chitosan (CS) is a low cost renewable natural polymer characterized by perfect hydrophilicity, biocompatibility, biodegradability, non-toxicity, antimicrobial activity and activity for adsorbing toxic metals and organic compounds [39,46]. It is produced from the deacetylation of chitin and has been used in various applications [47]. The modification of chitosan and activated carbon with nanomaterials, specifically metal oxides nanoparticles such as TiO2 [48,49], CuO [50,51], Fe3O4 [52,53] and ZnO [54,55] has gained great attention in the last decades as a result of the great value-added to their properties.

The study was aimed: (1) to prepare novel chitosan/activated carbons/ZnO nanocomposites (2) to ameliorate the photocatalytic activity of CS/ZnO with the combination of activated carbons prepared from biological wastes; (3) to investigate by studying the degradation of methylene blue (as a model pollutant) under visible light irradiation.

2. Materials and methods

2.1. Materials

Commercial zinc oxide nanoparticles (ZnO) were purchased from Sigma-Aldrich, sodium hydroxide (NaOH, CAS: 1310-73-2, Mw = 40 g mol–1, Biochem Chemopharma), hydrochloric acid (HCl, CAS: 7647-01-0, Mw = 36.46 g mol–1, 37%, Sigma-Aldrich), hydrogen peroxide (H2O2, CAS: 7722-84-1, Mw = 34.02 g mol–1, 30%, Biochem Chemopharma), acetic acid solution (C2H4O2, CAS: 64-19-7, Mw = 60.05 g mol–1, 99%, Sigma-Aldrich), nitric acid (HNO3, CAS: 7697-37-2, Mw = 63.01 g mol–1, 65%, Chem-Lab), phosphoric acid (H3PO4, CAS: 7664-38-2, Mw = 98 g mol–1, 95%, Sigma-Aldrich), potassium hydroxide (KOH, CAS: 1310-58-3, Mw = 56.11 g mol–1, Biochem Chemopharma), methylene blue (MB, molecular formula is C16H18ClN3S, C.I. No.52015, Mw = 319.85 g mol–1, Biochem Chemopharma).

2.2. Preparation of CS, ACAS and ACAB adsorbents

In this work, commercially pure zinc oxide, chitosan prepared from shrimp shells and two prepared activated carbons from apricot stones and animal bones, with different physical and chemical properties, were used.

The preparation method of chitosan (CS), activated carbon prepared from apricot stones (ACAS) and activated carbon prepared from animal bones (ACAB) was prepared according to a literature method [56–58].

The shrimp shells were washed thoroughly with flowing tap water to remove the soil and extraneous matter, dried and eventually ground into powders using a commercial grinder. Chitin was prepared from shrimp shells waste by a chemical process involving deproteinization (NaOH, 2.5 M, 75°C, 6 h), demineralization (HCl, 1.7 M, room temperature, 6 h) and decolorization (H2O2, 20%). Chitosan was prepared from chitin by deacetylation (NaOH, 50%, 100°C, 6 h).
Local apricot stones, which are a by-product of food processing, were collected and washed in distilled water. The apricot stones were crushed and ground in the laboratory. The carbonization was carried out by loading 10 g of dried apricot stones into a muffle furnace and heated a carbonization temperature of 700°C for 1 h. The modification of the carbonized material was done by mixing 10 g of sample with 250 mL of a mixture of 70% H₃PO₄ + HNO₃. After activation, the activated carbon prepared from apricot stones was washed with distilled water to remove residual chemicals and dried in an oven at 105°C for 24 h. The ACAS was ground and sieved to the required particle size (150–250 μm).

Bovine bones were collected from a local butcher. The bones were carefully washed with water severally and well cleaned from meat and fat. The dried bovine bones were crushed to a fine powder in an electrical grinder then calcined for 2 h at 700°C. The calcined material was impregnated with the KOH solution (0.01 M) and the activation step was carried out in glass tubes placed in a microwave. The microwave power was adjusted at 600 W for an irradiation time of 20 min. Activated carbon from bovine bones was washed using distilled water and dried in an oven at 105°C for 24 h.

2.3. Preparation of CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO NCs

CS/ACAS/ZnO and CS/ACAB/ZnO solutions were obtained by dissolving 1 g of ZnO powder in 100 mL of 1% acetic acid where it changed to zinc cations, then 1 g of chitosan (CS) was added to the mixture solution. The solution was mixed for about 10 min and then 1 g of activated carbon powder was added and mixed vigorously and sonicated for 30 min at room temperature. Then, 1 M NaOH was added drop by drop under magnetic stirring until the solution reached a pH value of 10. The mixture was heated in a water bath at 80°C for about 3 h. Finally, the resulting solution was filtered and washed with distilled water several times then dried in an oven at 80°C for 3 h forming CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites. The nanocomposite CS/ZnO was prepared in a similar way by using 1 g CS and 1 g ZnO [59].

2.4. Characterization methods

The crystal structures of ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO were analyzed by using a Bruker diffractometer, model D8 ADVANCE, equipped with a CuKα source and a fast detector LYNXEYE (system0-4) and working at the monochromatic radiation Kα₁ wavelength of copper (λ = 1.5406 Å). The JCPDS PDF database was used for phase identification.

The surface chemistry of CS, ACAS, ACAB, ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO was evaluated by Fourier-transform infrared spectroscopy (FTIR) spectrometer (FTIR-8400S SHIMADZU). The spectra were recorded in the frequency range of 650–4,000 cm⁻¹.

The microstructure and morphology of CS, ACAS, ACAB, ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO were examined using a scanning electron microscope (HITACHI S-2360 N). Scanning electron microscopy (SEM) experiment was conducted at an accelerator voltage range of 20–22 kV. Micrographs of the nanocomposites were performed with different magnifications of 300×, 600× and 3,000×.

The surface area of the nanocomposites was determined via the method described by Rao et al. [60]. After this, 0.5 g of adsorbent was placed in biochemical oxygen demand bottles containing 50 mL of 0.015, 0.025, 0.05, 0.10 and 0.15 M acetic acid. A control sample was also prepared for each concentration that did not contain any adsorbent. These samples were tightly closed and agitated for 1 h at 150 rpm before being filtered using 0.45-μm filter paper. The filtrate was titrated with a standard NaOH (0.1 mol L⁻¹) solution to determine the remaining concentration of acetic acid (C). The concentration of acetic acid remaining in each case (C) was divided by the number of moles of acetic acid (N) adsorbed per gram of adsorbent to determine the C/N ratio. The slope of the linear plot of C/N vs. C yielded Nₐ (Nₐ = 1/slope). By substituting Nₐ into the following equation, the surface area, A (m² g⁻¹), can be calculated using:

\[A = Nₐ × N₀ × σ × 10^{-20} \] \hspace{1cm} (1)

where \(N₀ \) is Avogadro's number, \(Nₐ \) is the number of moles per gram required to form a monolayer and \(σ \) is the molecular cross-sectional area given by a square Angstrom (21 Å) for acetic acid.

2.5. Photocatalytic activity

The photocatalytic activity of all nanocomposites (CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO) was confirmed by the removal of methylene blue (MB) from the aqueous solution. Typically, 0.1 g of CS/ZnO nanocomposite was added to 50 mL of 10 mg L⁻¹ MB solution and the resulting solution was placed in a quartz vessel to form a suspension under stirring. The suspensions were stirred first in the dark for 45 min to evaluate the adsorption/desorption equilibrium between the MB and the surface of the CS/ZnO nanocomposite. The suspension was then exposed to visible light (LED lamp 5 W) for the required time. During irradiation, the samples were withdrawn from the solution at fixed time intervals. Centrifugation of the samples was proceeded to eliminate the presence of any solid particles and measured with UV-Vis spectrophotometer (SHIMADZU UV-1700) at wavelengths at 665 nm for MB. The photocatalytic degradation of CS/ACAS/ZnO and CS/ACAB/ZnO was carried out using a similar process.

The degradation efficiency of MB by the nanocomposites CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO was then evaluated by calculating the percent of degradation using the following equation:

\[D(\%) = \left(1 - \frac{C_t}{C_0}\right) × 100 \] \hspace{1cm} (2)

where \(C_0 \) is the initial concentration of MB and \(C_t \) is its concentration after irradiation time (t).
In this study, the kinetics of the photodegradation of MB using the prepared nanocomposites corresponding to the kinetic of pseudo-first-order (Langmuir–Hinshelwood model) and pseudo-second-order models were studied to evaluate the photocatalytic performances of the considered nanocomposites [31].

In the pseudo-first-order kinetic model, the relationship between ln(C_0/C_t) and t can be expressed as follows:

$$\ln \left(\frac{C_0}{C_t} \right) = k_1 t$$

(3)

While in the pseudo-second-order kinetic model, the relationship between $(1/C_t - 1/C_0)$ and t can be expressed as follows:

$$\frac{1}{C_t} - \frac{1}{C_0} = k_2 t$$

(4)

where C_0 is the initial concentration of MB, C_t is the current concentration of MB, k_1 (min$^{-1}$) is the photodegradation rate constant of the first-order model and k_2 (L mg$^{-1}$ min$^{-1}$) is the photodegradation rate constant of the second-order model.

3. Results and discussion

3.1. X-ray diffraction, FTIR and SEM of materials

The crystal structure of the nanocomposites was confirmed using X-ray diffraction (XRD) analysis. The X-ray diffraction patterns of ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO were collected in the 2θ range from 10° to 80°.

The crystal size of ZnO sample was estimated using Scherrer’s Eq. (5) [61]:

$$D = \frac{K\lambda}{\beta \cos \theta}$$

(5)

where D is the crystalline particle size in terms of nm, K is Scherrer constant (0.9), λ is the wavelength of X-ray (0.154 nm), β is the full-width half-maximum of intensity and θ is the Bragg’s angle.

The average crystallite size value is approximately 65 nm. The lattice parameters are found to be $a = 3.2417$ Å and $c = 5.1876$ Å. Similarly, the space group of the commercial ZnO sample is found to be P63mc.

The XRD profiles, associated in Figs. 2a–c, of CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO show the presence of characteristic diffraction peaks at 2θ values of 31.7°, 34.4°, 36.1°, 47.4°, 56.6°, 62.8°, 66.3°, 68° and 69°, corresponding to the diffraction planes of (100), (002), (101), (110), (103), (200), (112), and (201), respectively, confirming the Hexagonal Wurtzite structure of ZnO nanoparticles, which are in very good agreement with the standard JCPDS file n°89-1397 for ZnO. Similar observations were reported in previous studies [6,45,62,63].

The characteristic peak at 2θ = 20° is originated from the amorphous structure of chitosan [64]. The XRD patterns of ACAS and ACAB present no peaks confirming its amorphous structure. The amorphous structure of activated carbons is clearly dominant in the CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites. XRD peaks of ZnO are visible in this nanocomposite confirming the presence of ZnO in crystalline stage in all the nanocomposites. This suggests that the crystal structure of ZnO nanoparticles has not been modified due to the presence of CS, ACAS and ACAB (may be due to chemical bonds).

The surface functional groups of the adsorbents (CS, ACAS, ACAB), nanoparticles (ZnO) and nanocomposites (CS/ZnO, CS/ACAS/ZnO, CS/ACAB/ZnO) is confirmed by the FTIR spectral analysis. The FTIR spectra of CS, ACAS, ACAB, ZnO, CS/ZnO, CS/ACAS/ZnO, CS/ACAB/ZnO and CS/ACAB/ZnO are shown in Figs. 3 and 4.
The obtained FTIR spectrum of CS (Fig. 3a) reveals the presence of peaks located at 3,435; 2,872; 1,619; 1,553; 1,375; 1,041 and 880 cm\(^{-1}\) corresponding to the presence of O–H and N–H symmetric stretching vibrations, C–H stretching vibration of the aliphatic, N–H bending vibrations of the primary amine group of CS, N–H bending of secondary amine, C–N stretching vibration, C–O stretching vibration and \(\gamma(C-H)\) in the aromatic ring [56].

The spectrum of ACAS (Fig. 3b) indicates the existence of peaks located at 3,294–3,751; 2,303; 1,739; 1,548; 1,219 and 1,131 cm\(^{-1}\), identical to the presence of O–H stretching vibration, C≡C stretching vibration of alkyne groups, C=O stretching vibration, aromatic CO– and phenolic –OH, and stretching vibrations of C–O in volatile species and carboxyl acids [57,65].

Many bands in the spectra of ACAB (3,352; 1,454; 1,018 and 870 cm\(^{-1}\)) are in good agreement with the literature data on hydroxyapatite (Fig. 3c) [58].

In the ZnO nanoparticles (Fig. 3d), there exist bands at 3,382–3,735; 2,990; 2,303; 1,749; 1,440 and 880 cm\(^{-1}\) which
could be associated with the presence of δ(–OH), δ(C–H), δ(C–O), δ(C–O), δ(C–H) and δ(–H), respectively [66,67].

Comparing the FTIR spectra of the prepared nanocomposites CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO (Figs. 4a–c), it can be noticed that the main vibration modes of CS, ACAS, ACAB and ZnO can be observed in the FTIR spectra of CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO. The FTIR spectrum of the CS/ZnO nanocomposite indicates the presence of the characteristic peaks which are related to the chitosan and ZnO.

In comparison with CS, the increase in the intensity of CS/ZnO at the band range of 3,362 cm⁻¹ suggests the formation of new interactions between NH₂ and OH groups of CS and ZnO (Fig. 4a) [68,69]. Chitosan contains reactive amine and hydroxyl groups on its backbone that make it act as a Lewis base and form coordination bonds with metal ions. The complexation reaction between CS and surface of ZnO nanoparticles occurs via ligand substitution reaction where the functional groups of CS substitute water molecules that are coordinated to surface zinc cations [39].

The same change was found in the band range of 1,383 cm⁻¹ (COO⁻, C–N) and 1,538 cm⁻¹ (C=C, N–H). The appearance of a band in the range of 871 cm⁻¹ in the spectrum of CS/ZnO suggests the presence of ZnO [55,62].

Compared to the spectra of CS/ACAS/ZnO and CS/ACAB/ZnO with CS/ZnO (Figs. 4a–c), the broader and stronger peak shifted to low wavenumber at 3,261 and 3,266 cm⁻¹ for ACAS and ACAB, respectively, which indicates a very strong interaction between the functional groups of CS, functional groups of activated carbons and the ZnO nanoparticles [70]. Thus, many changes in the absorption bands of CS/ACAS/ZnO and CS/ACAB/ZnO have been observed. Major absorption bands are observed between 650 and 1,900 cm⁻¹. They are a combination of several overlapping peaks and it is generally observed as a double band.

The increase in peak intensities is observed in CS/ACAS/ZnO (1,021 cm and 1,370 cm⁻¹) as compared to CS/ZnO. It is an indication of the formation of coordination bonds between various groups of Chitosan, activated carbons and Zn²⁺ ions of nanoparticles [45,63]. Finally, the results revealed that the functional groups present on the surfaces of CS, ACAS, ACAB and ZnO were also identified on the CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO surfaces, hence, the nanocomposites were successfully formed.

The SEM images of CS, ACAS, ACAB, ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO are given in Figs. 5 and 6. The micrographs (Figs. 5a and b) show a heterogeneous and relatively smooth structure for chitosan. The scanning electron micrographs of Figs. 5c and d indicate that the activated carbon prepared from apricot stones show the presence of porosity, irregularity and high heterogeneity compared to CS and ACAB. The images of the activated carbon prepared from the animal bones (Figs. 5e and f) reveal the irregular morphology of ACAB.

The surface morphologies of ZnO, CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO are compared in Figs. 6a–g. The SEM analysis is performed to study the significant changes in the surface morphology of the CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO in comparison to CS, ACAS, ACAB and ZnO. As can be seen from Figs. 6a and b, the ZnO nanoparticles have a crystalline spherical structure and uniform distribution. The SEM images of CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO (Figs. 6c–g) show the main difference between the nanocomposites prepared from CS, CS/ACAS and CS/ACAB which is the agglomeration and distribution of ZnO nanoparticles on the nanocomposites surfaces. The morphologies of CS, ACAS and ACAB have changed by the introduction of the ZnO nanoparticles. The surface morphology of the prepared nanocomposites reveals the spherical shape.

The specific surface areas of the CS/ZnO, CS/ACAS/ZnO and CS/ACAB/ZnO were 86.43 m² g⁻¹ (N₂ = 0.6833 × 10⁻³ mol g⁻¹), 330.76 m² g⁻¹ (N₂ = 2.6151 × 10⁻⁴ mol g⁻¹) and 251.36 m² g⁻¹ (N₂ = 1.9873 × 10⁻³ mol g⁻¹), respectively.

3.2. Kinetics study of the photodegradation of MB

In the dark, 26.8%, 36.1% and 67.5% of MB were adsorbed onto CS/ZnO, CS/ACAB/ZnO and CS/ACAS/ZnO in 45 min. This indicates a higher adsorption capacity of CS/ACAS/ZnO compared to CS/ZnO. CS/ZnO show a low adsorption capacity and it is due to the high percentage of ZnO compared with CS/ACAS/ZnO. The high specific surface area and the abundance of pore structures ensured the adsorption capacity of activated carbons for MB dye removal. This suggests that the presence of the activated carbons is mainly responsible for the methylene blue adsorption capability of the materials. These data reveal that the CS/ACAS/ZnO could be potentially used as adsorbent in the absence of visible light.

During irradiation, the photocatalytic degradation rate percentage of the MB solution can be easily calculated using Eq. (1) and the value is found to be 55% (CS/ZnO), 92% (CS/ACAB/ZnO) and 97% (CS/ACAS/ZnO) at 80, 80 and 40 min, respectively. It is evident from Fig. 7a that CS/ACAS/ZnO has the capability to almost fully degrade the MB dye within 40 min. However, CS/ACAB/ZnO is able to degrade 92% within 80 min.

The relatively high degradation rate of CS/ACAS/ZnO and CS/ACAB/ZnO can be attributed to the adsorption to MB during dark processing (Figs. 7a and b). It is found that light irradiation promoted the removal of MB by CS/ACAS/ZnO, indicating that CS/ACAS/ZnO was provided with certain photocatalytic ability. However, the rate of MB dye degradation was considerably improved after the incorporation of both ACAS and ACAB into the CS/ZnO matrix. This result was attributed to the small particle size, the large surface area of activated carbons ACAB and ACAS, rich functional groups and superior charge transfer from activated carbons to ZnO. Obviously, activated carbons combined on CS/ZnO significantly improved the MB degradation efficiency compared to CS/ZnO. Other researchers have adequately demonstrated that activated carbon with various surface groups offered photocatalytic activity [71].

In addition, the synergistic effect of photocatalysis and adsorption is the main reason for excellent MB degradation of the CS/ACAS/ZnO and CS/ACAB/ZnO nanocomposites.

Visible light is an energy that can be involved directly and is needed to activate the photocatalytic properties of the material to form radical species that contribute to the
Fig. 5. SEM images of (a and b) CS, (c and d) ACAS and (e and f) ACAB at different magnifications.
Fig. 6. SEM images of (a and b) ZnO, (c and d) CS/ZnO, (e and f) CS/ACAS/ZnO and (g and h) CS/ACAB/ZnO at different magnifications.
degradation of the methylene blue dye into green compounds. The activated carbon could increase the photocatalytic performance of ZnO nanoparticles by promoting the effective charge separation of electron-hole pairs if they can be composited. Although the large holes of activated carbons have been occupied by ZnO nanoparticles, blocking the porosity of the activated carbons surface. Under the radiation of light, the holes (h+) generated in the valence bond (VB) of nanocomposites interact with either the hydroxyl groups adsorbed on the surface of nanocomposites or the water in the medium. As a result, hydroxyl radicals are produced which accelerates the degradation of the methylene blue. These results indicate that the CS/ACAB/ZnO and CS/ACAS/ZnO nanocomposites have a certain photocatalytic activity [72,73].

The photodegradation rate constant of the first-order model calculated from the slope of the best fit line of the plot of ln(C_0/C_t) vs. reaction time (t) and the value of the apparent rate constant of the second-order model can be estimated by calculating the slope of a plot between (1/C_t – 1/C_0) vs. reaction time (t). The calculated rate constants are summarized in Table 1. The rate constants for the CS/ACAS/ZnO (0.0698 min⁻¹, 0.0754 L mg⁻¹ min⁻¹) and CS/ACAB/ZnO (0.0109 min⁻¹, 0.0309 L mg⁻¹ min⁻¹) are higher when compared to CS/ZnO (0.0016 min⁻¹, 0.0114 L mg⁻¹ min⁻¹). The highest k₁ and k₂ in MB may be due to the synergistic effect of adsorption by activated carbons and the interaction between the surface of CS/ZnO, CS/ACAB/ZnO and CS/ACAS/ZnO nanocomposites and the MB structure. Generally, the photocatalytic reactions will happen by adsorption of the target molecule on the surface of photocatalyst which is followed by oxidation by •OH radical. The results indicate that the photodegradation of MB fits pseudo-first-order and pseudo-second-order degradation kinetics (R² > 0.9).

The photodegradation of MB for different nanocomposites containing ZnO nanoparticles are summarized in Table 2. Our result is in compliance with the other works (97% of CS/ACAS/ZnO, 92% of CS/ACAB/ZnO).

3.3. Reusability study

The regeneration or reuse of the nanocomposites are one of the significant economic factors in the water treatment process. The prepared nanocomposites were tested for its stability and reusability in the reduction MB dye under visible light irradiation. The reusability experiments were employed under the same conditions of original experiment. The applicability of using the nanocomposites for several cycles of MB dye degradation was investigated for five consecutive cycles and data presented in Fig. 8. The results revealed that CS/ACAS/ZnO nanocomposite retained its activity up to five successive runs without significant loss in its photocatalytic activity in
the reduction of MB dye. It is suggested that CS/ACAS/ZnO nanocomposite may greatly contribute to solving the problems of dyes-polluted wastewater and water purification.

4. Conclusion

In this study, we developed an efficient photocatalysts composed of CS/ZnO with activated carbons prepared from biological wastes and investigated its comparative photodegradation for methylene blue onto CS/ZnO, CS/ACAB/ZnO and CS/ACAS/ZnO. The methylene blue was employed as a model dye to evaluate the photocatalytic degradation capability of the prepared nanocomposites under visible light irradiation in aqueous solution. The crystal structures, surface morphology and functional surface groups of the nanocomposites were characterized by XRD, FTIR and SEM. The XRD confirmed the presence of ZnO in crystalline stage in all the considered nanocomposites. The SEM images displayed agglomerated nanoparticles on the nanocomposites. The FTIR studies were in a good agreement with the XRD and SEM analyses. High rates of degradations were observed for CS/ACAS/ZnO (97%, 40 min) followed by CS/ACAB/ZnO (92%, 80 min) and CS/ZnO (55%, 80 min), respectively. The CS/ACAS/ZnO nanocomposite showed excellent adsorption properties with a high removal capacity of methylene blue of about ~68% in 45 min. The results showed that the nanocomposites prepared from chitosan, activated carbons and ZnO exhibited superior performance compared to chitosan and ZnO-based nanocomposites. The combination of activated carbons with a CS/ZnO blend improved its adsorption capacity and photocatalytic performance. The CS/ACAS/ZnO nanocomposite exhibited superior adsorption and photocatalytic degradation of methylene blue dye.

Table 1

| Kinetic constant and correlation coefficient of MB degradation by all nanocomposites |
|---------------------------------|---------------------------------|
| Nanocomposites | Pseudo-first-order | Pseudo-second-order |
| | \(k_1 \) (min\(^{-1}\)) | \(R^2 \) | \(k_2 \) (L mg\(^{-1}\) min\(^{-1}\)) | \(R^2 \) |
| CS/ZnO | 0.0016 | 0.9665 | 0.0114 | 0.9690 |
| CS/ACAB/ZnO | 0.0109 | 0.9284 | 0.0309 | 0.9635 |
| CS/ACAS/ZnO | 0.0698 | 0.9380 | 0.0754 | 0.9269 |

Table 2

| Comparison of photocatalytic activity between some photocatalyst contains ZnO nanoparticles |
|---------------------------------|---------------------------------|
| Samples | Dyes | Degradation (%) | References |
| Fe/ZnO@ceramic | Reactive Black 5 | 90 | [74] |
| UV/H\(_2\)O/ZnO | Violet 26 | 90.1 | [75] |
| ZnO/UV/H\(_2\)O\(_2\) | Disperse Red 60 | 97 | [76] |
| ZnO/PUF | Acid Black 1 | 86 | [77] |
| Ag/ZnO/G-C\(_2\)N\(_4\) | Methylene blue | 98 | [78] |
| Biochar-ZnO | Acid red 97 | 100 | [79] |
| ZnO/SB450 | Methyl orange | 90.8 | [80] |
| Ag/ZnO-montmorillonite | Methylene blue | 82.5 | [81] |
| CS/ZnO | Methylene blue | 55 | This work |
| CS/ACAS/ZnO | Methylene blue | 97 | This work |
| CS/ACAB/ZnO | Methylene blue | 92 | This work |

References

