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a b s t r a c t
The issue of consumer tap water (i.e., tap water collected without prior flushing – as drawn by 
consumers from household taps) is often neglected in scientific reports concerning drinking water 
microbiology. Although water companies usually provide water that is safe to drink, its microbial 
quality could significantly deteriorate within a building. In this study, four samples collected from 
taps assembled close to each other within the same building were compared in terms of bacterial 
community composition, biodiversity, and 16S rRNA gene-denaturing gradient gel electrophoresis 
and resistome profiling. The results revealed high diversity of samples, indicating the impact of 
premise plumbing or taps on the microbiome of consumer tap water. All detected bacteria belonged 
to the phyla Proteobacteria, Firmicutes and Bacteroidetes. However, neither common bacterial core 
nor resistome was determined among the investigated samples. Each sample presented a unique 
bacterial community. These results suggest that bacteria dwelling in premise plumbing or taps 
shape the microbiome of consumer tap water, masking the microorganisms present in tap water 
provided by a water company. It is known that it is not common practice for consumers to flush tap 
water before collection. Therefore, consumer health risk could primarily depend on bacteria dwell-
ing in premise plumbing.

Keywords:  Premise plumbing; Bacterial community composition; Bacterial biodiversity; Antibiotic 
resistance genes

1. Introduction

Tap water is one of the main sources of drinking water 
for consumers. It should be, therefore, safe to drink and free 
of contaminants threatening human health [1,2]. In many 
countries, including Poland, water companies are obliged 
to provide drinking water of appropriate properties only 
to water meters [3]. It is known, however, that the micro-
bial quality of tap water could deteriorate within premise 
plumbing due to water stagnation, elevated temperatures, 
and chlorine decay inside buildings [2,4–12]. Despite that, 
in many studies, tap water has been flushed prior to sample 
collection to alleviate the impact of water stagnation, and 

to depict the drinking water distribution system (DWDS) 
water quality [13–21]. This approach allows for better 
understanding of DWDS microbiomes. Nevertheless, it 
does not contribute to deepening knowledge about bacte-
ria dwelling in premise plumbing. Therefore, little is still 
known about consumer tap water (i.e., tap water collected 
without prior flushing – as drawn by consumers from 
household taps), commonly considered a drinking water 
source. Such investigations could be limited by the fact 
that consumer tap water could differ significantly among 
buildings. Nonetheless, the issue should not be neglected 
in scientific literature, and this study aimed to fill the gap.
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Few studies have attempted to investigate the influ-
ence of water stagnation on tap water microbial quality 
[5–7,9,10,22], and the development of biofilms inside taps 
[23–27], shower hoses [18,28], lab-scale [5] and full-scale 
[12,29] premise plumbing installations, or compared bac-
terial contamination of tap water collected from nearby 
taps [9]. Some reports on bacterial diversity within one 
building are also available [28,30–33]. Over 10 y ago, Rudi 
et al. [30] compared tap water samples collected from two 
taps assembled in a Norwegian hospital in terms of bac-
terial community composition and biodiversity. Similarly, 
Dias et al. [32] compared bacterial communities among 
consumer tap water samples collected from 10 taps assem-
bled in a Canadian hospital. Narciso-da-Rocha et al. [31] 
investigated the biodiversity and antibiotic resistance of 
sphingomonads isolated from tap water samples collected 
from 12 taps assembled in a Portuguese hospital. Stüken 
et al. [28] compared bacterial communities present in 
hose biofilms and tap water samples collected in a Swiss 
hospital and research facility, but focusing mostly on hot 
water. In the last two studies, 1-min flushing was applied. 
Ling et al. [33] claimed that bacterial community compo-
sition of stagnated water clustered with regard to water 
location within pipes (distinguishing between distal and 
approximal pipe sections), rather than to different build-
ings, floors, or time points. Therefore, little is still known 
regarding the biodiversity of bacterial communities pres-
ent in cold consumer tap water collected from full-scale 
non-hospital premise plumbing. Moreover, no compari-
sons of resistomes in consumer tap water collected within 
the same building are available, although antibiotic resis-
tant bacteria and antibiotic resistance genes (ARGs) have 
been formerly found in DWDSs [19,20,31,34–41].

The objectives of this study were to compare consumer 
tap water collected from four taps assembled close to each 
other within one building and to reveal the differences 
in bacterial biodiversity and resistome in each sample. It 
involved the application of molecular biology techniques, 
including next generation sequencing (NGS), 16S rRNA 
gene-denaturing gradient gel electrophoresis (DGGE), and 
polymerase chain reaction (PCR) of ARGs.

2. Materials and methods

2.1. Sample collection and DNA extraction

Consumer tap water samples were collected from four 
(I–IV) taps assembled at the Laboratory of Environmental 
Biotechnology of the Wrocław University of Science and 
Technology (Poland). The taps were characterised by dif-
ferent frequency of use and age. The details are presented 
in Table 1.

All taps were located on the same floor, close to each 
other in adjacent rooms. The new faucets (I–III) were assem-
bled after renovation, one and half a year before sample 
collection. The old faucet (IV) had been in use for many 
years. The premise plumbing of the building had been 
operated for decades.

The external surfaces of taps were disinfected with 96% 
ethanol (Sigma-Aldrich, St. Louis, MO, USA) to reduce sam-
ple contamination. No flushing was applied prior to sample 

collection, deliberately. Taps were sampled simultaneously at 
daytime (not after overnight stagnation) to depict the differ-
ences in casual consumer tap water. 3 L of water was collected 
to sterile glass bottles and filtered immediately through mixed 
cellulose membranes of 0.2 μm pore diameter (Whatman) 
with the application of a sterile filtration set (Nalgene, 
Rochester, NY, USA). DNA was extracted from membranes 
by means of a DNeasy PowerWater kit (QIAGEN, Hilden, 
Germany), in accordance with manufacturers’ instructions. 
DNA concentration and purity were measured by means 
of a NanoPhotometer N60 (Implen, München, Germany).

2.2. Bacterial community composition and biodiversity

Environmental DNA samples representing the micro-
bial communities present in consumer tap water collected 
from four nearby taps were subjected to NGS in order 
to investigate the bacterial community composition and 
biodiversity of each sample. 

The analyses were conducted as described previously 
[21], with some modifications. The metagenomic analysis 
was performed based on hypervariable region V3-V4 of the 
16S rRNA coding gene. Gene libraries were prepared with 
primers 341F and 785R, using Q5 HotStart High-Fidelity 
DNA Polymerase (NEBNext), in accordance with manu-
facturer’s instructions. The sequencing was conducted on 
MiSeq (Illumina, San Diego, CA, USA) in paired-end tech-
nology (2 × 250 nt), using a MiSeq Reagent kit v2 (Illumina), 
in accordance with manufacturer’s instructions. The bioin-
formatic analysis was performed by means of Quantitative 
Insights into Microbial Ecology 2 (QIIME 2) pipeline [42]. 
Samples were demultiplexed, the adaptors were removed, 
the quality control was provided, and low-quality 
sequences (quality < 26, minimum length 30) were dis-
carded with cutadapt [43]. Paired sequences were joined 
with fastq-join [44]. The sequences were clustered into 
operational taxonomic units (OTUs) with a 97% similarity 
threshold and OTUs < 10 were discarded with UCLUST 
[45]. Chimeras were removed with ChimeraSlayer [46]. 
The taxonomy was assigned with UCLUST [45], against 
reference sequences GreenGenes database, version 13_8 [47].

Further bioinformatic analysis was performed by 
means of R [48]. Alpha diversity was assessed based on 
rarefaction analyses for each sample in terms of Chao1 
estimator and Shannon and Simpson indices [49] with 
phyloseq and ggplot2 packages. Beta diversity analyses 
were performed to compare samples using heatmaps gen-
erated based on Bray–Curtis distance matrix and clustered 

Table 1
Characteristics of the taps

Tap Characteristics

Frequency of use Age

I Used intensively every day New
II Used several times a week New
III Almost unused New
IV Used intensively every day Old
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with UPGMA with phyloseq, vegan, and gplots packages. 
Principal component analysis (PCA) and principal coordi-
nates analysis (PCoA) plots, the latter based on Bray–Curtis 
distance matrix, were generated to reveal sample clus-
tering with phyloseq, factoextra, ggbiplot, and phyloseq, 
vegan, ggplot2 packages, respectively.

2.3. DGGE analysis of community structures

The community structures of bacterial consortia were 
compared by means of DGGE as described previously [20]. 
Briefly, due to low bacterial biomass in the investigated 
samples, nested-PCR protocol was applied in Mastercycler 
Nexus GX2 (Eppendorf). Nearly full 16S rRNA gene was ampli-
fied with primer set 27F (AGAGTTTGATCMTGGCTCAG) 
and 1492R (TACGGYTACCTTGTTACGACTT), and visu-
alised by agarose gel electrophoresis. The post-reaction 
mixture was used as a DNA template for amplification of 
an approximately 200-bp 16S rRNA gene fragment, cor-
responding to region V3, with primer set 338F-GCclamp 
(5′-GACTCCTACGGGAGGCAGCAG-3′ with a GC clamp 
attached) and 518R (5′-ATTACCGCGGCTGCTGG-3′). 
The final nested-PCR products were electrophoresed on 
denaturing gradient gel electrophoresis systems DGGEK-
2001 (CBS Scientific) under conditions identical as 
described previously [20].

The DGGE profiles were analyzed with CLIQS soft-
ware (TotalLab, Newcastle Upon Tyne, UK) to get similar-
ity matrices-based on the presence or absence of the bands. 
The dendrogram was created by the UPGMA. The synthetic 
line created based on the investigated lines was used as a 
reference line for dendrogram construction [20].

2.4. Detection of ARGs and other genes in environmental DNA

PCRs were conducted in Mastercycler Nexus GX2 
(Eppendorf) to detect ARGs and other genes related to 
resistance mechanisms or horizontal gene transfer: blaTEM, 
blaSHV, blaCTX-M, blaKPC, blaNDM, blaOXA, blaOXA-48, ampC, mecA, 
qnrA, qnrB, qnrS, oqxB, tetA, tetK, tetL, tetW, sulI, sulII, ermA, 
ermB, vanA, mcr-1, mexA, floR, qacEΔ1, qacH, tolA, intI1, 
tnpA in environmental DNA samples, under conditions 
identical as described previously [41]. The detailed infor-
mation about primer sequences, amplicon sizes, annealing 
temperatures, and references is provided in supplementary 
material (Table S1). 

3. Results

3.1. Bacterial community composition and biodiversity

All reads from samples I, II and IV were classified as 
bacteria. In sample III, bacteria constituted 99.91% of reads, 
and the remaining reads were unassigned. A total of three 
phyla (Proteobacteria, Firmicutes and Bacteroidetes) were 
identified in consumer tap water samples. Bacterial com-
munity composition at class level and at family level is 
presented in Fig. 1. 

The bacterial community of sample I was dominated by 
Comamonadaceae (84.04%) and Bacillaceae (14.19%). In 
sample II, the vast majority consisted of Moraxellaceae 

(98.63%); almost all the sequences assigned to this fam-
ily were further identified as Acinetobacter at genus level. 
The most diverse community was observed in sample III, 
with Oxalobacteraceae (73.10%) and Staphylococcaceae 
(13.14%) as the most abundant families; all the sequences 
were further identified as Cupriavidus and Staphylococcus at 
genus level, respectively. The bacterial community of sam-
ple IV primarily consisted of Moraxellaceae (60.83%) and 
Bacillaceae (39.16%); among them, almost all sequences were 
identified as Acinetobacter and Bacillus at genus level, respec-
tively. Considering the most abundant bacteria, exceeding 
1% of relative abundance, Acinetobacter was observed to 
be common for samples II and IV, Bacillaceae (other than 
Bacillus) and Comamonadaceae were common for samples 
I and III, and Bacillus for samples III and IV, whereas other 
bacteria were unique for a given sample. No clinically rele-
vant pathogens were found in this study. However, next to 
the aforementioned bacteria, Enterococcus spp. was found 
in sample III (1.66%) and Bacillus cereus in all samples 
(at relative abundance not exceeding 0.07% in any of them).

Alpha diversity, as well as number of reads and 
OTUs determined in this study, is presented in Table 2.

Based on rarefaction plots (Fig. S1), the limiting sam-
ple was sample I, which consisted of the lowest num-
ber of reads and OTUs. The lowest richness (Chaol) was 
observed in sample I. The highest biodiversity (Shannon and 
Simpson) was observed in samples III and IV, and lowest 
in sample II. It is worth emphasising that the discrepancies 
of the calculated alpha diversity and the results of bacterial 
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Fig. 1. Relative abundances of bacteria present in consumer 
tap water collected from the investigated taps (I–IV).
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community composition (Fig. 1) originate from the calcula-
tion method applied in this study. For the purpose of calcu-
lation of alpha diversity, the OTUs were taken into account, 
whereas only identified taxa are presented in the plots.

The beta diversity heatmap, generated based on Bray–
Curtis distance matrix, is presented in Fig. 2. PCA and 
PCoA plots are presented in Fig. 3.

Considering beta diversity heatmap (Fig. 2), as well 
as PCA and PCoA plots (Fig. 3), it could be observed that 
samples II and IV appear to have some similarities at OTUs 
level, whereas samples I and III seem to be separated. These 
results stay in accordance with determined bacterial com-
munity composition (Fig. 1). Based on x-axis, however, 
covering 57.9% and 57.3% of variance in PCA and PCoA 
plots (Fig. 3), respectively, samples I and III showed certain 
mutual similarities.

3.2. DGGE analysis of community structures

The differences in bacterial community structures were 
also investigated by means of DGGE. The purpose was to 
compare the community structure, not to perform phylo-
genetic analyses. The results are presented as an UPGMA 
dendrogram in Fig. 4.

Samples II and IV clustered together with approxi-
mately 95% of similarity. Samples I and III appeared dif-
ferent from samples II and IV, which is in accordance with 
beta diversity results presented above.

3.3. Detection of ARGs and other genes in environmental DNA

The PCR results are presented in Table 3.
PCRs provided positive results only for two sam-

ples, namely I and III. Only genes tetA, vanA, floR and 
tnpA were detected in this study, and only gene vanA was 
detected in both samples.

4. Discussion

The investigated bacterial communities consisted of 
classes known to be inhabitants of tap water [14,30,50–52]. 
The predominance of Alpha-, Beta-, Gammaproteobacteria 
and Bacilli is in accordance with previous research con-
ducted in Wrocław [21,41] and with other literature reports 
[2,16,32,53–56]. Flavobacteria, detected only in sample II at 
low abundance, were also found in other studies [21,51,54]. 
Although at class level sample I appeared similar to sam-
ple III, and sample II appeared similar to sample IV, the 
same similarities were not observed at further taxonomic 
levels (Fig. 1). Importantly, because the investigated com-
munity compositions are highly diverse, no common bac-
terial core could be determined in this study. The obtained 
results prove that each collected sample differed from the 
others. The microbiome of each sample was unique. The 
probable explanation of those differences could be the fact 
that tap water stagnating in a building is not microbiolog-
ically homogeneous. It could be the effect of entrainment 
of the fragments of biofilms dwelling on inner surfaces of 
premise pluming or faucets. As mentioned above, the tax-
ons identified in the study are consistent with commonly 
found tap water bacteria. Therefore, the microorganisms 
probably originated from the DWDS, but could have 
dwelled in some parts of premise plumbing or in taps and 
further differentiate due to the founder effect. The spe-
cies which benefited from the actual conditions in prem-
ise plumbing could have proliferated and eventually, have 
been found in consumer tap water samples. The bacteria 
present in collected samples were able to adapt to the prem-
ise plumbing environment. It was shown that microbiome 
of water stagnating in buildings for 5–6 d is affected mainly 
by distal small-diameter pipes, which harbored the high-
est cell counts and deviated most from water supplied to a 

Fig. 2. Beta diversity heatmap based on Bray–Curtis at 
operational taxonomic units level.

Table 2
Number of reads, OTUs, and alpha diversity

Sample No. of 
reads classified

No. of  
OTUs

Alpha diversity

Chao1 estimator Shannon index Simpson index

I 12,421 33 21.00 0.33 0.89
II 36,950 45 36.75 0.18 0.95
III 31,534 48 35.33 1.14 0.56
IV 37,468 46 35.50 0.80 0.51
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given building [33]. It could not be, therefore, excluded that 
the differences observed in the current study origin pri-
marily from the biofilms developed in distal pipe sections, 
located right behind the taps.

The results of alpha diversity also suggest dissimilari-
ties among the investigated bacterial communities. Higher 
Shannon and Simpson diversity was found in samples 
III and IV, completely different in terms of characteris-
tics considered in this study: tap III was almost unused 
and new, whereas tap IV was used intensively every day 
and old. It, therefore, appears that frequency of use and 
age of the faucets were not the factors shaping bacte-
rial alpha diversity. The results of beta diversity, together 
with the obtained DGGE dendrogram, indicate similar-
ity between samples II and IV. This observation confirms 
that the biodiversity of bacterial communities investigated 
in the current study is independent on the faucet’s charac-
teristics. Noteworthy, Lipphaus et al. [9] claimed that tap 
water collected from infrequently used taps presented 
higher bacterial loads, indicating a relationship between 

frequency of use of faucets and bacterial contamination of 
water. Nevertheless, number of bacteria in consumer tap 
water was not determined in this study. The presence of 
different bacterial loads in the investigated samples could, 
therefore, not be excluded. The presented results reveal that 
consumer tap water differ significantly within the building, 
even though the samples were collected from taps assem-
bled close to each other, on the same floor. In the current 
study, the tap use frequency is correlated neither with bac-
terial community composition nor with alpha and beta bio-
diversity. However, it deserves attention that the highest 
Shannon index has been obtained for consumer tap water 
collected from the almost unused tap III. Nevertheless, on  
the basis of the presented results, it is impossible to con-
clude about the relationships between tap characteristics 
and observed biodiversity. No such correlation could be 
discerned – perhaps more research is needed. These results 
highlight how varied consumer tap water is, even though 
all the taps were supplied by the same source water. The 
observed differences in bacterial biodiversity indicate the 

Fig. 3. Principal component analysis and principal coordinates analysis plots at operational taxonomic units level.

Fig. 4. Dendrogram of denaturing gradient gel electrophoresis profiles.



119A. Siedlecka et al. / Desalination and Water Treatment 222 (2021) 114–126

crucial role of premise plumbing in shaping the microbi-
omes present in consumer tap water. Determining the cause 
of the differences is, however, beyond the scope of the cur-
rent study.

Only several genes were detected in tested consumer 
tap water. It is at variance with some literature reports 
[34,35,40]. On the other hand, studies concerning tap water 
samples collected in the USA reported the presence of only 
tetA and sulI genes [57], or no ARGs [58], whereas only 
blaTEM, sulI and intI1 were found in tap water in Portugal 
[38]. Moreover, a previous study conducted on tap water 
collected in the same building [41] showed the presence 
of only genes qnrB, tetW, ermB, qacEΔ1 and intI1 among 
the tested ones. Therefore, low abundance of ARGs in this 
study is not surprising. As a result, no common occurrence 
pattern of ARGs was determined. It was suggested that 
certain genera of bacteria, for example, Acinetobacter and 
Methyloversatilis (from the genera identified in the present 
study) could be considered resistance vectors in tap water 

environments [59]. Acinetobacter was dominant in samples 
II and IV; moreover, in sample II Methyloversatilis was found 
(although at very low relative abundance of 0.01%, data 
not shown). These samples, however, proved free from the 
tested genes. On the other hand, the detected genes could 
have also been present as free-DNA molecules [60], regard-
less of bacterial community composition.

In contrast to the results presented in this paper, 
a common bacterial core was found for many DWDSs 
[14,52,55,56,61–63]. Therefore, high diversity of bacterial 
communities investigated in this study proves the signif-
icant impact of bacteria dwelling in premise plumbing on 
consumer tap water – otherwise, the samples would be more 
similar to each other, reflecting the microbiome of tap water 
reaching the building from the distribution system.

Dissimilarities among samples collected within one 
building were also observed by Rudi et al. [30], who com-
pared bacterial communities present in tap water sampled 
during winter and summer from kitchen and toilet faucets 
in a Norwegian hospital, and found a tap-specific, rather 
than season-specific, colonisation pattern. On the contrary, 
Dias et al. [32] claimed that among 10 consumer tap water 
samples collected after overnight stagnation in a Canadian 
hospital, 8 clustered together in terms of bacterial com-
munity composition, and the dissimilarities among the 
samples were explained by the specific conditions of each 
location, such as hydraulic regime, frequency of use, and 
building material of the taps [32].

The findings of Rudi et al. [30], as well as the results 
of the present study, suggest that the microbiome of con-
sumer tap water is primarily shaped by diversified bac-
terial communities dwelling in premise plumbing. Such 
differentiations probably occur over time. For example, 
biofilms reported to develop inside pipes made of various 
materials in the building operated for 1 y presented simi-
lar abundances of Alpha-, Beta-, and Gammaproteobacteria 
[29]. On the contrary, Zlatanović et al. [12] claimed that 
within the same plumbing, biofilms of different compo-
sitions were found after 430 d of operation of the instal-
lation. In the present study, the age of premise plumbing 
is not the limiting factor, because the building was con-
structed decades ago. Moreover, diverse biofilms could 
have developed inside faucets [23–25], also contributing to 
differences observed in the investigated bacterial communi-
ties. Therefore, the results of this paper could be partially 
explained by the presence of various biofilms dwelling in 
faucets or in pipe sections supplying water to each tap of 
adjacent rooms. However, more research is needed, includ-
ing the collection and investigation of putative biofilms 
from inner surfaces of the faucets and pipes, to support that  
hypothesis. 

On the other hand, the high diversity of the investi-
gated samples could be explained by accidental detach-
ment of biofilm fragments, entrained with flowing water. 
Biofilm is known to be a very complex structure, and its 
shearings could differ depending on hydraulic regimes 
[64]. Moreover, bacteria attached to particles [54] randomly 
reaching the taps could also contribute to the observed 
diversity of the samples. To confirm this assumption, 
consumer tap water should be sampled repeatedly on 
consecutive days from the same taps, and compared in a 

Table 3
Results of PCRs

Gene Gene classification, resistance 
target or mechanisms

I II III IV

blaTEM

β-Lactamase

– – – –
blaSHV – – – –
blaCTX–M – – – –
blaKPC – – – –
blaNDM – – – –
blaOXA – – – –
blaOXA–48 – – – –
ampC – – – –
mecA Methicillin – – – –
qnrA

(fluoro)quinolones

– – – –
qnrB – – – –
qnrS – – – –
oqxB – – – –
tetA

Tetracyclines

+ – – –
tetK – – – –
tetL – – – –
tetW – – – –
sulI

Sulfonamide
– – – –

sulII – – – –
ermA

Erythromycin
– – – –

ermB – – – –
vanA Vancomycin + – + –
mcr-1 Colistin – – – –
mexA Efflux – – – –
floR Florfenicol – – + –
qacEΔ1 Quaternary ammonium 

compounds
– – – –

qacH – – – –
tolA Transmembrane activity – – – –
intI1 Class 1 integron – – – –
tnpA Transposon – – + –
Total 2 0 3 0
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further study to exclude or confirm whether bacteria pres-
ent in the collected sample reach it randomly.

Taking into consideration the results of this study, it 
seems that threats to consumer health are associated not 
only with the microbial quality of tap water supplied by a 
water company, but also, or maybe primarily, with bacte-
ria dwelling in premise plumbing. Noteworthy, no oppor-
tunistic pathogens were identified in this study. However, 
the detection of Acinetobacter spp., Enterococcus spp. and 
Staphylococcus spp. draws attention, as these genera includ-
ing many pathogenic species [65]. Nevertheless, the pres-
ence of premise plumbing opportunistic pathogens in tap 
water was widely reported in the literature [8,13,21,30,66–
71]. Moreover, because opportunistic pathogens could find 
suitable conditions to proliferate in premise plumbing, they 
could pose a real threat to consumers, if develop within a 
building [8,13,22,72]. Flushing of tap water was suggested 
to potentially alleviate the adverse impact of water stagna-
tion [6,29], and therefore mitigate the influence of prem-
ise plumbing on consumer tap water microbial quality. 
According to Lautenschlager et al. [6], however, up to 30 L 
of tap water needs to be flushed to achieve the ‘network 
quality’. This strategy seems to be unattainable for consum-
ers in everyday use of tap water.

To sum up, this study confirms that bacterial communi-
ties present in consumer tap water could differ significantly 
even among samples collected within the same building. 
Although microbiomes of DWDSs seem to be well known, 
it is not certain what bacteria would be found in ‘a con-
sumer glass of water’. This emphasises the importance of 
the maintenance of proper conditions in premise plumbing 
with respect to microbial quality of consumer tap water 
[22], considering the fact that tap water flushing is not a 
common practice among consumers. Therefore, the nega-
tive impact of water stagnation and bacteria dwelling inside 
premise plumbing is not alleviated in everyday use of tap 
water. Although this paper presents a comparison of con-
sumer tap water in a case study, its results may be valid 
for other premise plumbing systems.

5. Conclusions and final remarks

• Bacterial communities present in consumer tap water 
collected from nearby taps varied significantly in 
terms of community composition, biodiversity, and 16S 
rRNA gene-DGGE and resistome profiles.

• The results of this full-scale case study confirm that the 
microbiome of consumer tap water is primarily shaped 
by bacteria dwelling in premise plumbing; although 
water companies usually supply tap water of suffi-
cient microbial quality, its properties could deteriorate 
during transportation via premise plumbing, and in 
some cases even pose a threat to consumer health.

• The presented results did not indicate that tap char-
acteristics (i.e., frequency of use or age) are reflected 
in the biodiversity of bacterial communities present in 
consumer tap water; more research is required to elu-
cidate this issue.

• High diversity of the investigated samples suggests 
that although knowledge on microbiomes of DWDSs is 
continuously expanding, little is still known about the 

ecology of bacteria in premise plumbing; nevertheless, 
this issue is of particular importance to consumer health, 
as tap water flushing is not a common consumer practice.
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Fig. S1. Rarefaction plots.
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Table S1
Annealing temperatures, amplicon sizes, and primer sequences used in PCRs

Gene Ta (°C) Amplicon size (bp) Primer sequences References

blaTEM 61 247 GCKGCCAACTTACTTCTGACAACG [1–4]CTTTATCCGCCTCCATCCAGTCTA

blaSHV 61 214 GATGAACGCTTTCCCATGATG [5,6]CGCTGTTATCGCTCATGGTAA

61 63 GGAGGCGTGACGGCTTTT [7–9]TTCAGTGCGATCCAGACGAA

blaKPC 60 196 CAGCTCATTCAAGGGCTTTC [10,11]GGCGGCGTTATCACTGTATT

blaNDM 60 189 GATTGCGACTTATGCCAATG [10,11]TCGATCCCAACGGTGATATT

blaOXA 64 296 ATTATCTACAGCAGCGCCAGTG [5,6]TGCATCCACGTCTTTGGTG

blaOXA-48 64 189 AGGCACGTATGAGCAAGATG [10,11]TGGCTTGTTTGACAATACGC

ampC 58 189 CCTCTTGCTCCACATTTGCT [12,13]ACAACGTTTGCTGTGTGACG

mecA 61 92 CGCAACGTTCAATTTAATTTTGTTAA [14,15]TGGTCTTTCTGCATTCCTGGA

qnrA 63 124 AGGATTTCTCACGCCAGGATT [7–9,16,17]CCGCTTTCAATGAAACTGCAA

qnrB 62 134 CAGATTTYCGCGGCGCAAG [16,18]TTCCCACAGCTCRCAYTTTTC

qnrS 62 118 GACGTGCTAACTTGCGTGAT [4,19–21]TGGCATTGTTGGAAACTTG

oqxB 64 131 TCCTGATCTCCATTAACGCCCA [5,16,22,23]ACCGGAACCCATCTCGATGC

tetA 58 210 GCTACATCCTGCTTGCCTTC [5,12,24–26]CATAGATCGCCGTGAAGAGG

tetK 58 169 TCGATAGGAACAGCAGTA [5,24,27]CAGCAGATCCTACTCCTT

tetL 58 267 TCGTTAGCGTGCTGTCATTC [5,24,27]GTATCCCACCAATGTAGCCG

tetW 60 168 GAGAGCCTGCTATATGCCAGC [1,16,25–28]GGGCGTATCCACAATGTTAAC

sulI 63 162 CGCACCGGAAACATCGCTGCAC [1,4,7,8,16,27,29–31]TGAAGTTCCGCCGCAAGGCTCG

sulII 63 190 TCCGGTGGAGGCCGGTATCTGG [1,16,26,27,29,31]CGGGAATGCCATCTGCCTTGAG

ermA 60 185 ATGTCTGCATACGGACACGG [12,13,32]ACTTCAACTGCCGTTATCGC

ermB 63 139 AAAACTTACCCGCCATACCA [16,33]TTTGGCGTGTTTCATTGCTT

vanA 60 65 CTGTGAGGTCGGTTGTGCG [14,20]TTTGGTCCACCTCGCCA

mcr-1 60 120 ACACTTATGGCACGGTCTATG [34]GCACACCCAAACCAATGATAC

mexA 58 79 AGGACAACGCTATGCAACGAA [9,17,35,36]CCGGAAAGGGCCGAAAT

floR 62 61 ATTGTCTTCACGGTGTCCGTTA [7–9,17,36]CCGCGATGTCGTCGAACT

qacEΔ1 63 226 ATCGCAATAGTTGGCGAAGT [7,8.37,38]CAAGCTTTTGCCCATGAAGC

qacH 60 59 GTGGCAGCTATCGCTTGGAT [7–9,17,35]CCAACGAACGCCCACAA

tolA 60 134 GATCTGGAGTTCGTTCGATGAG [39]CGCTTGATTCCTGGCTTTG

intI1 63 146 GGCTTCGTGATGCCTGCTT [31,33,40,41]CATTCCTGGCCGTGGTTCT

tnpA 63 102
AATTGATGCGGACGGCTTAA

[7–9,17,35]TCACCAAACTGTTTATGGAGTCGTT
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