ABSTRACT

In the present research, we reported TiO$_2$ subsidized periodic mesoporous organosilicates (TiO$_2$@PMOS) to reduce organic pollutants by photocatalytic degradation. TiO$_2$@PMOS was prepared by simply direct adsorbing of TiO$_2$ onto the PMOS and the PMOS organized on polysorbate 80 (C$_{64}$H$_{124}$O$_{26}$) templates through co-condensation of sodium silicate (Na$_2$SiO$_3$) and 3-methacryloxypropyltrimethoxysilane (C$_{10}$H$_{20}$O$_5$Si). The resultant TiO$_2$@PMOS were characterized by analytical techniques and showed the successful synthesis of template-assisted PMOS which provided a platform for the preparation of TiO$_2$@PMOS which exhibited efficient surface area reflected in effective degradation of methyl orange (MO) as an organic azo dye and found 5.36% and 9.02% reduction under visible and UV-lights respectively. Moreover, the addition of H$_2$O$_2$ with TiO$_2$@PMOS produced excessive hydroxyl free radicals which improved the degradation abilities up to 14.55% and 64.63% under visible and under UV-conditions. Results showed that PMOS provided well-support to TiO$_2$ for photo-degradation of MO due to the availability of long life-time to photo-generated electron–hole pairs. This proficient degradation is recognized to specific incapacitation of metallic nodes into the porous structure of PMOS. Moreover, TiO$_2$@PMOS were reused several times and showed 53% photocatalytic degradation of MO at optimized conditions. The small decrease in degradation competency of TiO$_2$@PMOS after several cycles also showed their durability to longtime for the reduction of organic pollutants.

Keywords: Periodic mesoporous silicates; Photocatalytic efficiency; Azo dye; Methylene bridge
1. Introduction

In the textile industry, cotton, silk, nylon and wool are extensively colored with azo dyes and their excessive amount is released in effluents [1] which becomes harmful and toxic [2], causing environmental problems and forced the researcher for environmental protection [3]. Subsequently, degradation of azo dyes in industrial effluents becomes the need of the hour. Photo-catalysis provided an impressive way to change the previous methods for the treatment of wastewater and disinfection of disease-causing contaminants [4]. Photo-catalysis found to be highly efficient, cost-effective and has a tendency to produce non-toxic and harmless products from pollutants degradation [5]. Modified magnetic ZnO composites also have effective potentials for photo-catalysis and are separable energy tools [6,7]. Periodic mesoporous silicates (PMOS) were a new phase of composites with the hybrid framework of organic and inorganic moieties. These composites were responsible to enhance characteristics on and into the surfaces of catalysts and adsorbents which were quite different from the conventional materials [8]. In the present study, economical TiO$_2$@PMOS was prepared [9] for photocatalytic efficiencies.

Recently, the fabricated nano carbon dots entail graphitic carbon nitride found to be valuable energy carriers [10–12]. Moreover, the mesoporous silica materials acquired massive significance after their discovery [13] and showed electrifying applications after structural modifications in supporting catalysis, adsorption, drug delivery, sensors and chromatography [14]. In the structural-network of PMOS, silicon atoms are in connection with organic moieties such as methyl, ethyl or phenyl and by using multiple precursors of organosilanes all together with definite templates multifunctional PMOS can be synthesized by hydrolysis and condensation reaction. These modifications enhanced the mechanical and optical characteristics of materials and prevent their surfaces from destruction [15]. At present, a large number of PMOS were synthesized for catalytic applications. PMOS modified sulfonic group provided effective reaction sites and consequently used in acid catalysis [16,17]. The surface area and porosity of PMOS facilitated catalytic moieties and metal atoms to combine in the PMOS-framework and also supported charge-transfer characteristics. Likewise, the catalytic modification of PMOS with Au and Ti nanoparticles [18,19] removed the drawbacks such as the heterogeneous distribution of catalytic sites and low stability of the modified surface.

In the present research, initially, PMOS was prepared by using an economical sodium silicate precursor which has many other advantages like low optical loss [20], high thermal resistance [21] and ease in the attachment of organic-inorganic hybrid synthesis [22] and produce more stability [23]. The synthesized PMOS managed direct incorporation of TiO$_2$ on PMOS surfaces to prepare TiO$_2$@PMOS rather than using TiO$_2$ nanoparticles [19]. Finally, photocatalytic efficiencies of TiO$_2$@PMOS were investigated by facile degradation of methyl orange which proved them an economical and durable catalysis source.

2. Experimental

2.1. Materials

Sodium silicate (Na$_2$SiO$_3$), hydrochloric acid (HCl), ethanol (C$_2$H$_5$OH), titanium dioxide (TiO$_2$) and acetone were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. 3-methacryloxypropyltrimethoxysilane (C$_{10}$H$_{20}$O$_5$Si), lithium aluminum hydride (LiAlH$_4$), methyl orange (MO), hydrogen peroxide (H$_2$O$_2$), sodium hydroxide (NaOH), potassium chloride (KCl) and terephthalic acid (TA) were supplied by Sigma Aldrich, Co., Ltd., (Germany). Deionized (DI) water was used throughout this work. All the chemicals were used as received.

2.2. Methods

2.2.1. Synthesis of PMOS

The synthesis of methylene-PMOS was based on the reported methods of hydrolysis and co-condensation with small modification [24–26]. A clear solution of polysorbate 80 templates (0.7 g) and HCl (0.65 g) into 120 g of deionized water was obtained with constant stirring at room temperature. Later on, sodium silicate (1.0 g) with 3-methacryloxypropyltrimethoxysilane (1.70 g) as silicon foundations were added into the mixture and left for 2 h at 45°C with continuous stirring. For aging, the mixture was heated at 85°C for 22 h under constant conditions. The templates were removed from the as-synthesized material using ethanol (380 g) and acetone (280 g) with constant stirring at 56°C for 5 h. The solid product was collected by filtration and washed systematically with deionized water and acetone. The synthesized PMOS was dried in an oven at 100°C for 24 h.

![Fig. 1. Schematic design for the template-assisted synthesis of TiO$_2$@PMOS.](image-url)
2.2.2. Synthesis of TiO$_2$@PMOS

Deionized water (80 mL) was used to make a uniform slurry of as-synthesized PMOS (0.7 g) with gentle sonication. Then TiO$_2$ (0.3 g) was added into the prepared slurry which was almost completely adsorbed onto the PMOS with constant stirring for 5 h. After that LiAlH$_4$ (0.3 g) was mixed to reduce metal-cation if present at room temperature to get TiO$_2$@PMOS [26] (Fig. 1). The final product was filtered, lightly washed with distilled water and dried in an oven at 100°C for 12 h.

2.3. Characterization

All synthesized PMOS and TiO$_2$@PMOS were studied by powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) for the elucidation of structure. Thermogravimetric analysis (TGA) was used to study the thermal stability of materials. Absorptions were studied by ultraviolet/visible (UV/VIS) spectrophotometry and photoluminescence respectively. Moreover, the surface study was explored by transmission electron microscopy and Brunauer–Emmett–Teller using a nitrogen adsorption instrument.

3. Results and discussion

3.1. Materials synthesis and characterization

Sol–gel synthesis comprised hydrolysis reaction of silicon-precursors in which hydroxyl groups (OH) replaced the alkoxy groups (OR). Organosilica linkages are formed by succeeding co-condensation reactions of silanol groups which consequently formulate PMOS after experienced aging [27]. PMOS provided fine support to TiO$_2$ for the fabrication and facilitated with a reduction to prepare TiO$_2$@PMOS. The structure interpretation of PMOS and TiO$_2$@PMOS was explored by using XRD, FTIR and photoluminescence (PL) analysis techniques.

The progressive structural study of PMOS and TiO$_2$@PMOS was done by employing XRD pattern. Small nodes were observed in PMOS spectra through wide angle X-ray diffractometer demonstrating the amorphous nature of PMOS [28] which was changed after incorporation of TiO$_2$ moiety into the orderly crystalline phase (Fig. 2a). XRD pattern of TiO$_2$@PMOS nanoparticle showed intense diffraction peaks indicating the well-ordered crystalline phase. The most important well resolved peaks indexed as (110), (200), (211), (220) and (221) (Fig. 2a) associated with anatase phase of TiO$_2$ (JCPDS: 00-002-0406) [29] and supported to the incorporation of organic and TiO$_2$ moieties in synthesized material [20]. Scherrer’s equation, \(D = \frac{K\lambda}{\beta \cos \theta} \) was used to calculate crystallite size. Where \(D \) represents the average size of crystallite under examination, \(K \) and \(\lambda \) have constant values of (0.9) and (1.54056 Å) respectively, \(\beta \) and \(\theta \) correspond to full-width at half-maximum and diffraction angle of the diffraction peaks [30]. The most intense peaks at 20 = 34.42 and 40.04 in TiO$_2$@PMOS spectra were used to determine the average particle size by Scherrer’s equation which was found to be 13.41 nm.

![Fig. 2. (a) XRD, (b) FTIR-spectra of PMOS and TiO$_2$@PMOS, (c) TGA-curves of PMOS and TiO$_2$@PMOS and (d) PL of PMOS and TiO$_2$@PMOS with Tauc plot of TiO$_2$@PMOS.](image-url)
FTIR analysis substantiated the interactions of PMOS and TiO$_2$@PMOS (Fig. 2b). The significant peaks at 495; 702; 770; 1,100; 1,312; 1,460; 1,726 and 2,940 per cm indicated that organic and metal moieties successfully integrated into the synthesized materials. The absorption peaks at 702 and 770 cm$^{-1}$ showed the presence of –Si–C and –Si–OCH$_3$, respectively but significant peaks at 2,940 and 1,460 cm$^{-1}$ exhibited C–H stretching and bending respectively [20,28,31–34]. The stretching vibrations at 1,726 and 1,100 cm$^{-1}$ were due to –C–O–C– and Si–O–Si linkages, respectively [35] revealed mixed bridging of organic and silica moieties in PMOS while a significant peak at 1,312 cm$^{-1}$ was recognition of Si–CH$_2$ bending [36] indicated the successful anticipation of the organic moiety in synthesized PMOS. The decrease in intensities of PMOS peaks (Fig. 2b) and the characteristic spectral bands at 495 cm$^{-1}$ was due to Ti–O–Ti linkages [29] confirmed the incorporation of TiO$_2$ moiety into PMOS which made the current research more crucial which also emphasizes the comparatively better efficiency of the direct co-condensation method [37].

TGA was used to study the thermal stability of PMOS and TiO$_2$@PMOS (Fig. 2c). The operational condition of temperature was 30°C to 1,000°C with a 20°C/min heating rate and 20 mL/min flow-rate of nitrogen gas. PMOS and TiO$_2$@PMOS samples showed an initial weight loss of 6.9% and 4.74%, respectively due to the loss of water content up to 200°C. Subsequently, the thermogram showed 6.36% weight-loss up to 250°C in TiO$_2$@PMOS revealed further evaporation of physisorbed solvents but at higher temperatures from 250°C–350°C weight loss was 17.9% and 3.53% in PMOS and TiO$_2$@PMOS respectively due to the removal of chemisorbed water and organics [28,38]. These results showed that organic moieties present in varying proportions in and onto the material surfaces. Lastly, PMOS and TiO$_2$@PMOS showed a total mass reduction of 23.6% and 13.29% respectively up to 450°C. Afterward, there was no further destruction occurred in the mesoporous arrangement [28] revealing higher thermal stability of TiO$_2$@PMOS compared to PMOS.

Photoluminescence (PL) and UV-spectroscopic techniques were used for the optical study of PMOS and TiO$_2$@PMOS. The synthesized PMOS were found to be active for fluorescence but the same amount of the successful incorporated TiO$_2$@PMOS showed more intense photoluminescence at a wavelength of 700 nm with bandgap ~2.55 (Fig. 2d) representing the charge transfer point [29].

Transmission electron microscopy (TEM) images (Figs. 3a, b and Figs. S2, S3) exhibited spherical shapes of PMOS-particles and revealed well-ordered particles (Figs. 3c, d and Fig. S4) of TiO$_2$@PMOS. The magnification of the TEM image (Fig. 3d) indicated the presence of tiny dots of TiO$_2$ in the network of PMOS. ImageJ software measurements [39] showed an average particle size of 15.42 nm (Fig. S1) favored to an average particle size of TiO$_2$@PMOS determined by Scherrer’s equation.

3.2. Adsorption study

Brunauer–Emmett–Teller (BET) nitrogen adsorption study (Fig. 4 and Figs. S9, S10) showed the highly porous nature of the synthesized PMOS. Likewise, 3.26 nm in pore diameter demonstrated the mesostructure of

Fig. 3. TEM images of (a and b) PMOS; (c and d) TiO$_2$@PMOS.
particles. These proficient properties of PMOS enabled them for high loading of TiO$_2$ to make TiO$_2$@PMOS and for catalysis.

3.3. Inspecting ‘OH generation and degradation mechanism

The generation of hydroxyl free radicals was examined by photoluminescence. In the present study, the hydroxyl free radicals (‘OH) were produced by TiO$_2$@PMOS and chemically changed terephthalic acid (TA) into hydroxyterephthalic acid (TAOH) which was a fluorescent material [40]. The investigation was carried out in a 4 mL aqueous solution of 0.01 M NaOH accompanying 3 mM of TA, 0.03 mM of H$_2$O$_2$ (0.3 mL) and 0.1 M KCl (2 mL). Another comparable test was a 4 mL aqueous solution of 0.01 M NaOH along with 3 mM of TA, 0.03 mM of H$_2$O$_2$ (0.3 mL), 0.1 M KCl (2 mL) and 2 mg of TiO$_2$@PMOS. Both samples were irradiated by visible light using a Tungsten bulb (200 W) with constant stirring in a 2 × 2 × 2.5 ft3 dark box. After 20 min the photoluminescence spectra were recorded as shown in Fig. 5 and revealed.

Photocatalysis of organic pollutants by TiO$_2$@PMOS required energy to excite electrons from valence band (VB) to conduction band (CB) [29]. UV-irradiation full filled that energy demand and produced hydroxyl free radicals (‘OH) after reacting at holes of VB with water molecules and hydroxyl ions. The dissolved oxygen molecules were also reduced by the electrons present in the CB of TiO$_2$@PMOS into O$_2$ radicals that can also cause degradation [41]. However, most of O$_2$ radicals were converted to highly reactive ‘OH and then changed into H$_2$O$_2$ [42,43]. All the free radicals formed were short-lived due to unpaired electron, chiefly ‘OH radicals were highly reactive and degraded the MO as expected in Fig. 5. The formation of the excessive hydroxyl free radicals (‘OH) by TiO$_2$@PMOS and H$_2$O$_2$ was also monitored and shown in Fig. 5 by producing an intense fluorescent material hydroxyterephthalic acid (TAOH) from terephthalic acid (TA).

3.4. Photocatalytic activity of TiO$_2$@PMOS

Degradation of methyl orange was used to investigate the photocatalytic activity of TiO$_2$@PMOS under visible and UV-irradiation.

The demonstrative experiment was performed to examine the photolytic efficiency of TiO$_2$@PMOS. In a typical procedure, 30 mL of 20 ppm solution of MO was used to check degradation ability by using 12 mg of TiO$_2$@PMOS at a pH of 2. The whole assembly was kept in the dark box of 2 × 2 × 2.5 ft3 dimensions fitted with UV-visible light sources for 1 h with continuous stirring in order to get absorption data after attaining adsorption–desorption equilibrium.

The samples were irradiated by a Tungsten bulb of 200 W and UV-A lamp as UV-visible light sources for 1 h to record the absorption values. Moreover, the samples were again irradiated with visible and UV-lights for 1 h.
after the addition of 0.3 mL H2O2 (0.03 M). The UV-visible spectrophotometer was used to scan all the samples which showed characteristic absorptions near-visible regions (Figs. S5 and S6). The absorption data was collected with time intervals of 0, 12, 24, 36, 48 and 60 min respectively.

The photocatalytic efficiency of TiO2@PMOS was also assessed in terms of rate constant (k) of pseudo-first-order reaction. After subtracting dark adsorptions, the values of rate constants were 0.00096 and 0.00153 min⁻¹ under visible- and UV-light respectively (Fig. 6b). However, the rate constant values were increased to 2.79 and 11.5 times after adding H2O2 which were 0.00268 and 0.01761 min⁻¹ (Fig. 6b) under visible and UV-conditions respectively. The improved strengths of reaction rates by using H2O2 showed a large formation of active intermediates in which hydroxyl free radicals were dominant. The overall performance of TiO2@PMOS under UV-light to remove MO in the absence and presence of H2O2 was 9.02% and 64.63% respectively. Likewise, the degradation efficiencies of TiO2@PMOS under UV-light without and with H2O2 were 0.15 and 1.07 mg of MO per mg of TiO2@PMOS respectively. These results were in good agreement with the effective degradation of TiO2@PMOS compared to some previously reported material shown in Table 1 that made these materials more effective and durable to reuse in catalytic studies.

3.5. Reusability of catalyst

TiO2@PMOS was recollected by centrifuging all the used samples, successively washed with distilled water and dried to reuse it. The catalytic experiment was repeated several times under optimized conditions [29] to observe photolytic activity of the regenerated TiO2@PMOS. The UV-visible spectrophotometer showed the characteristic absorption even after fifth recycle (Fig. S8a). The absorption data collected after time intervals of 00 and 60 min was found to be 51% degradation of MO (Fig. 7). The results showed that the efficiency of TiO2@PMOS was decreased only 20% after five consecutive cycles. The comparative degradation competency of TiO2@PMOS reused made it more effective to recycle several times in catalytic studies.

4. Conclusions

The sol–gel technique was found to be much effective to produce periodic mesoporous organosilicates.

Fig. 6. (a) Photo-degradation competencies and (b) linear fit results of TiO2@PMOS without and with H2O2 under visible and UV-irradiations.

Fig. 7. Photo-degradation of MO by recycled TiO2@PMOS.

Table 1

<table>
<thead>
<tr>
<th>Catalyst (conc.)</th>
<th>Removal (%)</th>
<th>Time (h)</th>
<th>k⁰ (min⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM-TiO2, NC and porous TiO2 beads</td>
<td>16.2% and 32.8%</td>
<td>01</td>
<td>0.00016 and 0.00248</td>
<td>[29]</td>
</tr>
<tr>
<td>TiO2@PMOS (PMOS: Polyacrylamide)</td>
<td>14.55% and 63.64%</td>
<td>01</td>
<td>0.00153 and 0.0176</td>
<td>Present work</td>
</tr>
</tbody>
</table>
A similar kind of practice was done in the present study by co-condensation of low-cost sodium silicate as silica precursor using polysorbate 80 templates. The colloidal solution of PMOS was used to soak TiO$_2$ in and onto the PMOS-surfaces to prepare TiO$_2$ subsidized PMOS and their characteristics result demonstrated the successful incorporation of organic and metal moieties in and onto the channels of synthesized materials. Subsequently, the TiO$_2$@PMOS exposed a higher potential to lessen MO with H_2O_2 under visible and UV light irradiation due to the large production of hydroxyl radicals as discussed earlier. These results indicated high surface area, reasonable bandgap and systematized nature of TiO$_2$@PMOS. Furthermore, the impressive degradation by reuse TiO$_2$@PMOS indicated their long-time durability. The effective outcomes open new platforms for impressive photo-degradation that made the current work innovative to synthesize the harmless and cost-effective metal-based periodic mesoporous organosilicas for photo-degradation of organic azo dyes as well as other organic pollutants.

Acknowledgments
The authors are highly thankful to Higher Education Commission (HEC) of Pakistan and Islamia University of Bahawalpur (IUB), Pakistan for financial support.

References
[2] U.G. Akpan, B.H. Hameed, Parameters affecting the TiO$_2$@PMOS exposed a higher potential to lessen MO with H_2O_2 under visible and UV light irradiation due to the large production of hydroxyl radicals as discussed earlier. These results indicated high surface area, reasonable bandgap and systematized nature of TiO$_2$@PMOS. Furthermore, the impressive degradation by reuse TiO$_2$@PMOS indicated their long-time durability. The effective outcomes open new platforms for impressive photo-degradation that made the current work innovative to synthesize the harmless and cost-effective metal-based periodic mesoporous organosilicas for photo-degradation of organic azo dyes as well as other organic pollutants.

Fig. S1. The average particle size of PMOS calculated by ImageJ software using TEM images.

Fig. S2. TEM image of PMOS with 10.0 zoom.
Fig. S3. TEM image of PMOS with 15.0 zoom.

Fig. S4. TEM image of TiO$_2$@PMOS.

Fig. S5. UV-visible spectra for photocatalysis of TiO$_2$@PMOS without (a) H$_2$O$_2$ and with (b) H$_2$O$_2$ under visible irradiation.

Fig. S6. UV-visible spectra for photocatalysis of TiO$_2$@PMOS without (c) H$_2$O$_2$ and with (d) H$_2$O$_2$ under UV-irradiation.
Fig. S7. UV-visible spectra for photocatalysis of blanks (a) TiO$_2$ and (b) H$_2$O$_2$.

Fig. S8. (a) UV-visible spectra of the 5th cycle by TiO$_2$@PMOS and (b) percentage degradation of blanks (TiO$_2$ and H$_2$O$_2$).

Fig. S9. Barrett–Joyner–Halenda graphs PMOS.
Fig. S10. BET graphs showing the surface area of PMOS.