Potential recycle of industrial waste towards economic adsorbent preparation for effective removal of toxic elements

Raed E-S Rihan¹, Mohamed M. Abo-Aly¹, Mohamed F. Attallah²,*
¹Chemistry Department, Faculty of Science, Ain Shams University, Egypt, Tel. +01067026041; email: raedrihan@yahoo.com (R.E-S. Rihan), Tel. +20 1141534022; email: aboalymo@yahoo.com (M.M. Abo-Aly)
²Analytical Chemistry and Control Department, Atomic Energy Authority of Egypt, 13759 Cairo, Egypt, Tel. +20 1007730930; email: dr.m.f.attallah@gmail.com
Received 30 September 2020; Accepted 4 March 2021

ABSTRACT
Activated carbon prepared from sawdust, an inexpensive biowaste of the wood industry, to remove Pb²⁺, Co²⁺, and Cd²⁺ ions from water solutions was examined in batch experiments. Batch studies were conducted to study the impact of some factors like pH, contact time, the metal ions concentration, and temperature on adsorption efficiency. The results indicated that the optimum conditions for Pb²⁺, Co²⁺, and Cd²⁺ ions removal at pH 6 and an equilibrium contact time of 90 min. Adsorption isotherms such as Freundlich and Langmuir were estimated. It is turned out that the sorption obeys the Langmuir model, and the extreme sorption capacity of Pb²⁺, Co²⁺, and Cd²⁺ was 50.65, 15.53, and 12.54 mg/g, respectively. Thermodynamic factors like ΔH°, ΔS°, and ΔG°, for sorption Pb²⁺, Co²⁺, and Cd²⁺ have been calculated. The thermodynamic data demonstrated that the sorption of metal ions endothermic and spontaneous. Desorption studies show that the used adsorbent may be regenerated in HCl and HNO₃. The efficacy of the sorbent in the treatment of surface and groundwater metal ions and some organic pollutants has been investigated. The results revealed that the used adsorbent has been successful a promising material for treating some contaminants.

Keywords: Sorption; Activated carbon; Biomass sawdust; Water treatment; Heavy metals

1. Introduction
Water is the most critical compound on the earth for life, and it is a tremendous global challenge for the 21st century to possess drinkable water. Pure and unpolluted water is a fundamental requirement for all living organisms [1]. Water pollution with heavy metals is the most critical ecological troubles because of their poisonous nature [2], not biodegradable and tend to concentrate on living things, resulting in various disorders and unrest like headache, dizziness, nausea, vomiting, chest pain, dry cough, chest tightness, rapid breathing, shortness in respiration, nephritis, acute weakness, central nervous system damage, cancer, lung damage, the brain damage and eventually results in death [3]. Therefore, it is vital to eliminate the heavy metal ions before they are discharged into the environment [4].

Heavy metals are produced from different industries, and the most essential are: mining and smelting, electrolysis, nuclear energy industries, metallurgical, tannery, cosmetics, insecticides, photography, textiles, paints, dyes, and battery industries. Heavy metals are categorized into three different types: poisonous metals, valuable metals, and radioactive metals [5]. According to the World Health Organization (WHO), some metals, such as aluminum, chromium, cobalt, cadmium, zinc, nickel, copper, lead, and mercury, are considered poisonous metals [6].
The most extensively used strategies for metal ions removal from wastewater involve chemical precipitation/co-precipitation, advanced oxidation processes, exchange of ion, electrochemical treatment, technologies of the membrane, photo-catalysis, reduction, adsorption, flocculation, membrane filtration, reverse osmosis, and so on., had been suggested inside the literature [7]. Among these technologies, adsorption is a preferable strategy for metal removal from wastewater because of its simplicity in performance, non-toxic, high efficacy, competitively priced, low investment, fast, eco-friendly, and universal [7–9].

One of the most effective and dependable physicochemical methods is the adsorption with activated carbon [10]. Even so, activated carbon commercially available is typically produced from coal or wood and is thus reasonably costly [11]. Therefore, it is essential to make low-priced and productive carbon used to control water contamination. Extensive diversity of very cheap materials and agricultural waste products is used to eliminate heavy metals from aqueous solutions, involving peat [12], palygorskite [13], modified soda lignin [14], saffron leaves [15], waste olive stones [16], walnut shell [17], coconut husk [18], tobacco stem [19], coffee husk [20], pistachio shell carbon [21]. In Egypt, there are large amounts of agricultural wastes that pose a solid contaminant to the ecosystem.

The sorbent sawdust is one of the most promising. It was commonly utilized for heavy metals removal and some other undesirable substances from aqueous solutions [22]. Since it is available in redundancy, renewable, sustainable sources, large production, and very cheap [23,24], wealthy in cellulose, lignin, and hemicellulose to be utilized for adsorbing heavy metal ions from wastewater [25]. If such materials are treated with thermal and/or chemical methods, the efficiency of removing heavy metals with the raw cellulosic biomass may be increased considerably [26]. Therefore, sawdust is one of the most critical agricultural biomasses that may serve as prospect sorbents to remove various contaminants, particularly metal ions.

There are fundamentally two procedures for activated carbon preparation: chemical activation and physical activation [27]. Chemical activation produces extremely adsorbents by groups of activating agents like: NaOH, KOH, K$_2$CO$_3$, H$_3$PO$_4$, ZnCl$_2$ [28] because it produces biocarbon, which is characterized by highly developed surface area, and pore size distribution required [29]. Amongst the chemical activating agents, phosphoric acid (H$_3$PO$_4$) is eco-friendly because it is non-contaminant, is readily washed off with water, and may be recycled back into the process [30]. Physical or gas activation includes increasing porosity by gasifying at comparatively high temperatures with an oxidizing agent; the widespread activation agents are carbon dioxide, steam, or their combination [31]. The most popular activating agents are CO$_2$ and steam since the reaction's endothermic behavior makes the process easier to control. In general, the utilization of CO$_2$ is favored because the reactivity of CO$_2$ becomes low at extreme temperatures making the activation process easy to control [27].

The world production concerning quicklime (calcium oxide) is evaluated at about 350 million tons. The steel industry globally utilizes somewhere in the range of 140 to 160 million tons of quicklime. A large part of quicklime production is manufactured in captivity in steel factories, where it is necessary raw material for steelmaking [32]. Furthermore, quicklime is a crucial component of technology used in a wide range of industries, including agriculture activities, construction, disinfection, food processing, plastics, SO$_2$, post-combustion capture, water treatment, and sugar refining [33], leather tanning processes [34], fungicides [35] and soil stabilization by adding burned limestone products either calcium hydroxide or quicklime [36]. Moreover, calcium oxide is that the principal ingredient in traditional Portland cement [37]. Calcination of limestone at 800°C produces quicklime [38]. During the calcination process, a massive quantity of CO$_2$ is emitted [39]. If the CO$_2$ released during the calcination process is expelled directly into the air, it leads to the “greenhouse effect” with reciprocal impacts on the natural ecological systems and humanity. As a result, the effective re-use of the expelled CO$_2$ generated during the calcination process is one of the main strategies for avoiding its emission through the atmospheric air. The activation of activated carbon using the CO$_2$ effluent can fulfill the criteria of a sustainable green, relatively clean process [40].

The purpose of this work was aimed to explore the possibility of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ ions removal from aqueous media via sawdust modified with phosphoric acid and carbon dioxide produced from the calcination of limestone. The optimum conditions were examined to achieve maximum adsorption using such materials. The consumption of a part of biomass in this application protects the environment from another form of contamination resulting from biomass's discarding. Batch experiments are carried out for kinetic studies on the decontamination of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ from aqueous media. The effect of different parameters like change in pH during sorption, temperature, initial concentration, and contact time was examined. Pseudo-first-order, second-order, Freundlich and Langmuir equations are used to assess the adsorption mechanisms. The relevant thermodynamic factors, namely: ΔG^o, ΔS^o, and ΔH^o, have been determined and defined.

2. Materials and methods

2.1. Materials

The used reagents in all experiments were of analytical grade (AR) and used without further purification. Cobalt nitrate, lead nitrate, and cadmium nitrate were purchased from Merck (Darmstadt, Germany). Calcium carbonate, sodium hydroxide, phosphoric acid, and hydrochloric acid were procured from PanReac. Sawdust was obtained from the workshop of the local timber industry. De-ionized water was used to prepare the solutions during experimental work.

2.2. Adsorbent preparation

The sawdust was obtained from the workshop of the local timber industry in Sharkia Government, Egypt, and rinsed with de-ionized water to remove impurities. The sawdust was washed to avoid leaching of color as well as other impurities till a clear solution was produced. Eventually, overnight, the cleaned sample was dried at 100°C ± 5°C. To activate the surface sites of sawdust phosphoric acid (H$_3$PO$_4$), 70% was used. In this experiment, 150 g
of sawdust was soaked in 100 mL 70% phosphoric acid. The sample was agitated slightly to guarantee acid penetration within. Then, the mixture’s temperature was fixed at 80°C for overnight to assist in the precursor’s proper wetting and impregnation. Then adding 50 mL (10%) Calcium carbonate to the impregnated mass, then inserted into the ignition tube, which was then put open from both ends in a tubular electric furnace. The temperature had been raised to the necessary end temperature at a rate of (50°C/10 min). The carbonization process was conducted for 1 h at a temperature of 800°C. Hot de-ionized water washed over the sample. The washing process was repeated four times and immersed overnight in 1 percent NaHCO₃ solution to eliminate the remaining acid, followed by drying overnight at 110°C. Eventually, the sample was cooled at room temperature and ground to develop powdered sawdust activated carbon (SAC).

2.3. Adsorption studies

The batch equilibrium method was used to conduct adsorption experiments. Tests were conducted by stirring 0.25 g of sorbent using an orbital shaker with 50 mL (50 mg/L) of adsorbing solutions. Samples were shaken at various time periods and filtered with filter paper (Whatman). The filtrate solution was analyzed with atomic absorption for the residual concentrations Pb²⁺, Co²⁺, and Cd²⁺. Adsorption isotherm and kinetic experiments with specific initial concentrations of Pb²⁺, Co²⁺, and Cd²⁺ ions were performed by maintaining the sorbent dose at a constant level. All experiments were done in triplicate to avoid any inconsistency in experimental results, and the calculated uncertainty does not exceed 5%. In the aqueous phase before and after the experiment, sorption capacities were determined from Eq. (1) while the uptake % was calculated according to Eq. (2):

\[q_e = \left(C_0 - C_e \right) \left[\frac{V}{m} \right] \] (1)

\[\% \text{Removal} = \left(\frac{C_0 - C_e}{C_0} \right) \times 100 \] (2)

where \(q_e \) sorption capacity per unit mass of sorbent (mg/g); \(C_0 \) initial metal ions concentration (mg/L); \(C_e \) the final concentration of metal ions at equilibrium (mg/L); \(m \) sorbent mass (g); \(V \) sample volume (L).

2.4. Characterization of sorbent

The characterization of SAC was performed by scanning electron microscope (SEM) Model JSM-5600 LV, JEOL, Japan, attached to an Oxford Inca EDX detector, and the FTIR spectrometer (8000s, Thermo-Scientific, USA) with a Japan, attached to an Oxford Inca EDX detector, and the scanning electron microscope (SEM) Model JSM-5600 LV, JEOL, Japan, attached to an Oxford Inca EDX detector, and the scanning electron microscope (SEM) Model JSM-5600 LV, JEOL, Japan. FTIR spectra of SAC before and after adsorption are presented in Fig. 1, denoting many extreme peaks on the sorbent surface, specific to various important functional groups. It is noted that the peak at 3,427 cm⁻¹ is due to the O-H stretching vibration [41]. The peaks appear at 2,922.17 and 2,854.71 cm⁻¹ were linked to the C-H stretching in methyl and methylene groups [42], while the band appears at 1,646 cm⁻¹ refers to the existence of C=O group [43]. The appearance of the peak around 1,569.93 cm⁻¹ allotted to the C-O stretching vibration may attribute to lignin and hemicelluloses [42]. The band at 1,413.72 cm⁻¹ may be due to COO⁻ groups [44]. The peak that appears at 1,384.37 cm⁻¹ may attribute to the oxygen functional groups as C=O carboxylic stretching group [45]. The band at 1,038.99 cm⁻¹ was assigned to C-O of the cellulose [46]. The band seen at 702.48 cm⁻¹ may attribute to functional group C-O-C of esters, phenol, or ether [47], while the band seen at 469.21 cm⁻¹ may be related to the γ(C-H) and γ(C-C) vibrations that are usually found in polycyclic aromatic compounds of hydrocarbons [48], Fig. 1a.

FTIR spectrum of SAC after sorption of Pb²⁺, Co²⁺, and Cd²⁺ ions is illustrated in Fig. 1b. Some peaks are shifted after Pb²⁺, Co²⁺, and Cd²⁺ – loaded SAC, indicating the participation of these functional groups in the SAC binding of Pb²⁺, Co²⁺, and Cd²⁺ ions [14]. The broadband appears at 3,427 cm⁻¹ shifted to 3,423 cm⁻¹ after metal ion sorption, suggesting the participation of –OH in forming complexes with metal ions [49]. In comparison, the peak at 1,646.06 cm⁻¹ disappeared after Pb²⁺, Co²⁺, and Cd²⁺ sorption by SAC. The C=O peak at 1,569.93 cm⁻¹ gets shifted to 1,560 cm⁻¹, and the peak at 1,413.72 cm⁻¹ allocated to COO⁻ groups, shifted to 1,449.41 cm⁻¹. Additionally, the C-O appears at 1,039.89 cm⁻¹ was appeared at 1,043.45 after Pb²⁺, Co²⁺, and Cd²⁺ ions sorption. In contrast, the peak is seen at 702.48 cm⁻¹ associated with C-O-C functional groups of esters, ether, or phenol 703.75 cm⁻¹. Likewise, the peak appears at 469.21 cm⁻¹ shifted to 474.23 cm⁻¹.

Depending on the shifts as mentioned above in the bands that appeared in the FTIR spectrum of SAC adsorbent, it able be noted that some of the SAC functional groups like –OH, –C=H, –C=O, C==C and –COO⁻ could act as active adsorption sites for the Pb²⁺, Co²⁺, and Cd²⁺ ions [49,50] and responsible for the metal ions binding [51]. The reduction in wavenumbers of specific bands in the FTIR spectrum after sorption Fig. 1b shows that interactions between the Pb²⁺, Co²⁺, and Cd²⁺ ions and those functional groups that occur during the sorption process [52]. The interactions between Pb²⁺, Co²⁺, and Cd²⁺ and some functional groups may be led to a shift in specific functional groups’ vibrations. The coordination sites of some functional groups are changed [53].

Scanning electron microscope (SEM) was applied to identify the morphology of the surface of the SAC sample, where the image of SAC using SEM Fig. 2a indicates that the SAC surface is extremely unequal, porous and channels in...
Fig. 1. FTIR spectrum of SAC. (a) SAC treated with \(\text{H}_3\text{PO}_4 \) and limestone before adsorption and (b) SAC treated with \(\text{H}_3\text{PO}_4 \) and limestone after adsorption metal ions.

Fig. 2. SEM surface images and EDX analysis of the SAC adsorbent: (a) SEM of the SAC before sorption, (b) SEM of the SAC after sorption, (c) EDX analysis of the SAC adsorbent before adsorption, and (d) EDX analysis of the SAC adsorbent after adsorption.
the SAC structure pronounced as structures resembling a hole, and this might be due to the activation process using H3PO4 and CO2 produced during calcination of limestone. Still, it can be understood clearly from Fig. 2b after sorption of Pb2+, Co2+, and Cd2+ ions, the SAC surface is wrapped with Pb2+, Co2+, and Cd2+ ions and surface anomalies.

The SAC sorbent energy-dispersive X-ray spectroscopy (EDX) analysis Fig. 2c before adsorption primarily refers to carbon (79.97 wt.%), oxygen (13.85 wt.%), and sodium (3.45 wt.%) together with phosphorus and calcium traces. Fig. 2d after adsorption indicates that the content of carbon (63.84 wt.%), oxygen (16.52 wt.%), phosphorus (2.00 wt.%), lead (7.45 wt.%), cobalt (6.64 wt.%), and cadmium (3.56 wt.%) demonstrated the successful metal ions adsorption by the SAC adsorbent. The EDX analysis results of the SAC adsorbent before and after Pb2+, Co2+, and Cd2+ ions adsorption give credibility to the observation that the SAC adsorbent was able to remove these metal ions from their aqueous solution.
at a definite number of active sites of sorbent [63]. The main
equation of Langmuir isotherm is shown as:

\[
\frac{C_e}{q_e} = \left(\frac{1}{q_m b} \right) + \left(\frac{C_m}{q_m} \right)
\]

where \(C_e \) is the sorbate concentration in solutions at equi-
librium (mg/L), \(q_e \) is equilibrium sorbate concentration on
sorbent (mg/g), \(q_m \) is maximum sorption capacity of the
sorbent (mg/g), \(b \) is Langmuir sorption constant (L/mg).
The plot of \(C_e/q_e \) vs. \(C_e \), as shown in Eq. (3), must be a
straight line where the slope and intercept are equivalent
to \(1/q_m \) and \(1/q_m b \), respectively, when sorption undergoes
the Langmuir model.

The graphic representation of \((C_e/q_e) \) against \(C_e \) gives a
straight line for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) ions adsorbed on SAC,
as shown in Fig. 4. The values of constants \(b \) and \(q_m \) were
estimated from the graph's intercept and slope, respec-
tively, Table 1. The value of maximum sorption capacity of
the adsorbent \(q_m \) is corresponding to the monolayer that
covers the surface of the sorbent and defines the overall
sorbent capacity for particular ions.

The calculated correlation coefficients (\(R^2 \)) are given
in Table 1. The higher values of correlation coefficient 0.98,
0.99, and 0.99 for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\), respectively, are
produced from the Langmuir isotherm. The calculated
adsorption capacity (\(q_m \)) determined from the Langmuir
model for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) was 50.65, 15.53, 12.54 mg/g,
respectively, which is very close to the experimental value.
The maximum value of metal sorption (\(q_m \)) for metal ions
studied followed the order: Pb\(^{2+}\) > Co\(^{2+}\) > Cd\(^{2+}\).

The affinity of Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) to be sorbed on the
SAC sorbent is represented as the constant dimensionless
(\(R_L \)), defined as the intensity of sorption or separation fac-
tor and measured from Eq. (4). The value \(R_L \) refers to
the sorption nature [63].

\[
R_L = \frac{1}{(1 + bC_0)}
\]

where \(C_0 \) is the highest initial sorbate concentration and
\(b \) is the constant of Langmuir. Based on the values of
\(R_L \), the process of sorption is known to be irreversible.
The calculated values of R_L in the present investigation were found to be 0.018–0.43, 0.005–0.14, and 0.005–0.13 for Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$, respectively; confirming the favorable adsorption of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$. The Freundlich isotherm postulates multilayer sorption at active hetero-energetic sites. Freundlich's linear equation may be written as:

$$\log q_e = \frac{1}{n} \log C_e + \log K_f$$

where K_f (mg g$^{-1}$) and n are the adsorption capacity and adsorption intensity constants, respectively. K_f values may be utilized to describe the comparative sorption capacity, and if $1/n$ values are between 0.1 and 1, this refers to better sorption on the adsorbent [63].

The Freundlich isotherm sorption validity was evaluated through drawing $\log q_e$ vs. $\log C_e$, giving linear relationships as shown in Fig. 5. According to the values of R^2 and adsorption capacity (q_{max}) values, it may be assumed that the Langmuir isotherm is better suited to the experimental results than the Freundlich isotherm.

3.3.2. Adsorption kinetic studies

First and second-order kinetic models have been used for the analysis of sorption kinetic data. For the analysis of sorption kinetics, experimental results were implemented to first and second-order kinetic models [65]. Lagergren’s first-order model equation is among the most commonly used for liquid sorption studies and is expressed by Eq. (6).

$$\log(q_e - q_t) = \log q_e - \frac{K_1}{2.303}t$$

where q_e and q_t are the sorbed solute quantities (mg/g) at time t (min) and equilibrium, respectively. K_1 is a pseudo-first-order constant (min$^{-1}$). By plot $\log(q_e - q_t)$ against t, which gives a straight line illustrated in Fig. 6a, q_e (mg g$^{-1}$) value can be generated from the intercept and the K_1 (min$^{-1}$) value from the slope, Table 1.

Table 1 shows that the values of R^2 are low and the q_e values calculated from the graph plotted don’t confirm the experimental results. This ensures that the sorption of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ onto SAC doesn’t obey first-order kinetics.

Whereas Eq. (7) represents the linear shape of the second-order model equation. This equation was developed by Ho and McKay [66].

$$\frac{t}{q_t} = \frac{1}{K_f q_{max}^2} \frac{t}{q_e}$$

where q_t is the quantity of solute sorbed (mg/g) at the equilibrium while q_e is the quantity of solute sorbed (mg/g) at t.
(min). \(K_s \) is the equilibrium constant of the pseudo-second-order rate (g/mg min). Plotting \(t/q_t \) against \((t/q) \), which gives a straight line illustrated in Fig. 6b, the values of \(K_s \) and \(q_e \) can be estimated from the intercept and the slope, respectively, Table 1.

The value of \(q_e \) derived from the second-order model along with correlation coefficient \(R^2 \), Table 1, indicated that the values of \(q_e \) are consistent with the experimental results. The \(R^2 \) of the second-order kinetic model was greater than that of the first-order kinetic model for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) signifying that the pseudo-second-order is better fitted than the pseudo-first-order model and implies that the sorption completely conforms to second-order reaction. Consequently, the sorption process for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) seemed to be dominated by a chemisorption mechanism [67].

3.4. Thermodynamic parameters

The sorption process is highly reliant upon the system’s operating temperature [63]. Sorption experiments of Pb\(^{2+}\), Co\(^{2+}\) and Cd\(^{2+}\) are carried out using pH 6 solutions at different four temperatures of 298, 313, 323 and 333 K.

The following equations were used to measure thermodynamic parameters like free adsorption energy (\(\Delta G^0 \)), adsorption heat (\(\Delta H^0 \)) and standard entropy (\(\Delta S^0 \)) as a function of temperature during the adsorption process using the initial concentration of 50 mg/L for Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) ions and sorbent dose of 0.25 g/50 mL of SAC.

\[
\Delta G^0 = -RT \ln K_s \\
\Delta G^0 = \Delta H^0 - T \Delta S^0 \\
\ln K_s = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}
\]

The values of \(\Delta S^0 \) and \(\Delta H^0 \) were derived from the intercept and slope of the linear graph of ln\(K_s \) against 1/T shown in Fig. 7 and given in Table 2.

Positive values of \(\Delta H^0 \) indicated the endothermic nature of sorption, which has also been demonstrated by the rise in Pb\(^{2+}\), Co\(^{2+}\), and Cd\(^{2+}\) sorption capacity of the adsorbent with temperature rise values. The negative values of \(\Delta G^0 \) refer to the procedure's visibility, and the Pb\(^{2+}\),
Co$^{2+}$, and Cd$^{2+}$ adsorption on SAC adsorbent were spontaneous [57,63]. The more negative values obtained for ΔG° with rising temperature express the sorption process is more favorable at a higher temperature. Positive ΔS° values show an increase in the level of the sorbed ions’ freedom. The rise of sorption at extreme temperatures could be related to the extension of pore size and/or the adsorbent surface activation [68].

3.5. Desorption and regeneration studies

Recovery and consequent recycling of sorbent are of vital significance for the effective applications of any sorbent. The effective regeneration must recover the sorbent almost to its original shape for successful recycling without reducing contaminants sorption capacity and without any physical changes or damages [69]. Furthermore, the regeneration process’s objective is to re-use the same sorbent for the for heavy metals’ sorption, which should decrease the cost of the treatment process. Recovery of the Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ ions was carried out by various desorbing agents containing mineral acids as H$_2$SO$_4$, HNO$_3$, HCl, NaOH, and Na$_2$CO$_3$. These desorbing agents may change the sorbed ions’ chemical shape and/or break the bond between sorbate and adsorbents.

Results revealed that the adsorption process’s reversibility is only nearly complete in the case of HCl and HNO$_3$ for Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$. In this concern, various concentrations of HCl and HNO$_3$ were tested. The maximum recovery of Pb$^{2+}$ was obtained using 0.5 M HCl and 0.5 HNO$_3$ with elution efficiencies of 99.7% and 83.5%, respectively. In comparison, the ultimate recovery of Co$^{2+}$ was achieved using 1.0 M HCl and 1.0 HNO$_3$ with elution efficiencies of 98.8% and 98.3%, respectively. The full recovery of Cd$^{2+}$ was performed using 0.5 M HCl and 0.5 HNO$_3$ with elution efficiencies of 97.7% and 85%, respectively.

3.6. Comparative to other sorbents

To explain SAC’s validity as an efficient sorbent for Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$, its sorption capacity must be evaluated by comparing other sorbents mentioned. The q_{max} values for sorption Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ on different sorbents are compared with our sorbent and are summarized in Table 3. The results indicated that SAC sorbent could be regarded as an auspicious material for eliminating Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ ions.

3.7. Application study

In addition to the previous results and the proven ability of prepared SAC activated carbon produced from agricultural biomass to remove metal ions, its ability to treat the surface water and groundwater containing metal ions was studied. Moreover, studying the possibility to treat industrial wastewater (methylene blue and congo red) and disinfection by-products (DBP’s), which is called trihalomethanes (THMs), which represent one of the most dangerous problems results during disinfection of water by chlorine in water plants. Removal of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ from 50 mL surface and groundwater samples containing different concentrations (50 and 100 ppm) and a sorbent dose of 0.250 g at 90 min contact time was found to be effective in removing Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$. This experiment was performed in five cycles, and a reasonable degree of sorption was achieved. Fig. 8 shows that SAC has shown good ability to treat Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ at different concentrations (50 and 100 ppm) in surface and groundwater. In general, the ability of SAC to remove metal ions in the surface water is higher than that of groundwater. Moreover, the order of percent removal of metal ions was Pb$^{2+}$ > Co$^{2+}$ > Cd$^{2+}$. The obtained results revealed a high affinity for sorption removal of methylene blue and a low tendency to sorption congo red using the prepared SAC, as

![Graph](image-url)
Table 3
Comparison of maximum adsorption capacities of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ on various sorbents

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Pb</th>
<th>Co</th>
<th>Cd</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineapple fruit peel</td>
<td>28.55</td>
<td>–</td>
<td>42.10</td>
<td>[70]</td>
</tr>
<tr>
<td>Modified rice straw</td>
<td>9.42</td>
<td>–</td>
<td>9.7</td>
<td>[71]</td>
</tr>
<tr>
<td>Bamboo activated carbon</td>
<td>5.09</td>
<td>–</td>
<td>7.843</td>
<td>[72]</td>
</tr>
<tr>
<td>Corn cob</td>
<td>20.52</td>
<td>2.52</td>
<td>10.31</td>
<td>[73]</td>
</tr>
<tr>
<td>Chitin with polypyrrole</td>
<td>8.64</td>
<td>–</td>
<td>6.17</td>
<td>[74]</td>
</tr>
<tr>
<td>Commercial activated carbon</td>
<td>20.30</td>
<td>–</td>
<td>27.30</td>
<td>[50]</td>
</tr>
<tr>
<td>Raw cherry kernels</td>
<td>10.84</td>
<td>–</td>
<td>11.23</td>
<td>[75]</td>
</tr>
<tr>
<td>Peat moss</td>
<td>–</td>
<td>30.03</td>
<td>–</td>
<td>[12]</td>
</tr>
<tr>
<td>Spent green tea leaves</td>
<td>–</td>
<td>7.09</td>
<td>–</td>
<td>[76]</td>
</tr>
<tr>
<td>Palygorskite</td>
<td>–</td>
<td>8.88</td>
<td>–</td>
<td>[13]</td>
</tr>
<tr>
<td>Sawdust activated with H$_3$PO$_4$ and limestone</td>
<td>50.65</td>
<td>15.53</td>
<td>12.54</td>
<td>Present study</td>
</tr>
</tbody>
</table>

Fig. 8. Evaluation of sorptive removal of Pb$^{2+}$, Co$^{2+}$, and Cd$^{2+}$ by SAC from surface and groundwater: (a) % removal of from surface water and (b) % removal from groundwater.

Fig. 9. Evaluation of sorptive removal of some organic pollutants by SAC: (a) % removal of methylene blue and congo red and (b) % removal of THMs.
shown in Fig. 9a. Likewise, the results indicated that SAC had been a successfully applied material for the removal of THMs from aqueous solutions at a different standard mixture of THMs (8, 16, 32, 50), and 64 μg/L as shown in Fig. 9b. Therefore, SAC proves a good ability to remove DBP's from drinking water, especially THMs.

4. Conclusions

The present study indicated that activated carbon prepared from sawdust obtained from the local timber industry workshop has successfully removed Pb²⁺, Co²⁺, and Cd²⁺ ions from aqueous solutions. The EDX analysis results of the SAC adsorbent before and after Pb²⁺, Co²⁺, and Cd²⁺ ions adsorption showed the presence of the three metal ions on the sorbent surface. They confirmed the observation that the SAC sorbent was able to remove these metal ions from their aqueous solutions. The efficiency of SAC was investigated using a batch adsorption technique under various experimental conditions. The maximum sorption was observed at pH 6 within 90 min. The equilibrium sorption data fit better with the Langmuir equation than the Freundlich. A pseudo-second-order model sufficiently describes the kinetics of the adsorption process. The estimated thermodynamic parameters showed the expeditious, endothermic and spontaneous nature of the sorption process. Moreover, the efficacy of SAC in the treatment of metal ions from surface and groundwater and other organic pollutants has been applied. The results revealed that SAC had been successfully applied and effective material for treating of heavy metals and some organic pollutants.

References

