Application of NaOH-treated rice husk for adsorptive discharge of cobalt ions from wastewater

Shagufta Zafar a,b,†, Muhammad Imran Khan c,*,†, Warda Hassan d, Sidra Mubeen d, Tariq Javed e, Shabnam Shahida f, Suryyia Manzoor g,*, Abdallah Shanableh c, Aziz ur Rehman b, Muhammad Latif Mirza b, Nasir Khalid h, Mushtaq Hussain Lashari i,*

aDepartment of Chemistry, The Government Sadiq College Women University, Bahawalpur 63000, Pakistan, email: shg_zf@gscwu.edu.pk
bDepartment of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan, emails: azizypk@yahoo.com (A. ur Rehman), mlatifmirza@gmail.com (M.L. Mirza)
cResearch Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates, emails: raoimranishaq@gmail.com (M.I. Khan), shanableh@sharjah.ac.ae (A. Shanableh)
dDepartment of Chemistry, The Women University Multan, Katchery Campus, LMQ Road, Multan, emails: warda.chem@wum.edu.pk (W. Hassan), sidra_sidra786@yahoo.com (S. Mubeen)
eDepartment of Chemistry, University of Sahiwal, Sahiwal, Pakistan, email: jtariq56@yahoo.com
fDepartment of Chemistry, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan, email: shabnamshahida01@gmail.com
gInstitute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan, email: suryyia.manzoor@bzu.edu.pk
hChemistry Division, Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, Pakistan, email: mkhalid@gmail.com
iDepartment of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, email: mushtaqlashary@gmail.com

Received 23 November 2020; Accepted 2 April 2021

ABSTRACT

In this research, batch adsorption of cobalt ions (Co(II)) from wastewater onto NaOH-treated rice husk (TRH) was studied at room temperature. Several techniques such as Fourier transform infrared, scanning electron microscopy, and energy diffraction X-rays were used to prove adsorption of Co(II) onto TRH. The percentage discharge of Co(II) was increased with the contact time, amount of TRH, and temperature whereas decreased with an initial concentration of Co(II) solution. Nonlinear isotherms such as Langmuir, Freundlich, and Dubinin–Radushkevich were utilized to study experimental data for adsorption of Co(II) onto TRH. Results showed that experimental data fitted well to nonlinear isotherms. The value of Langmuir constant $Q_m$ was $9.35 \times 10^{-5}$ mol/g. Adsorption kinetics was studied by using pseudo-first-order model, pseudo-second-order model, Elovich model, liquid film diffusion model, modified Freundlich equation, and Bangham equation. Results exhibited that experimental data for adsorption of Co(II) fitted well to pseudo-second-order model having $k_2$ numerical value of 0.45 g/mg min. Thermodynamic analysis revealed that adsorption of Co(II) from wastewater was endothermic with a change in enthalpy ($\Delta H^\circ$) value of 15.406 kJ/mol and spontaneous process. Desorption of Co(II) from TRH was also investigated. Hence, TRH could be used as an excellent adsorbent for the discharge of Co(II) from wastewater.

Keywords: Treated rice husk; Nonlinear isotherms; Adsorption; Endothermic process; Cobalt ions

*Corresponding author.
†Both authors contributed equally to this work.
1944-3994/1944-3986 © 2021 Desalination Publications. All rights reserved.
1. Introduction

Usually, heavy metals are hazardous to the environment and organisms because of their inherent toxicity and the ability to assemble in living tissues [1]. They can cause several issues for the animals and human's health as well as the environment [2,3]. Cobalt ion is crucial for metabolic activities in low concentrations and may also be efficient in regulating pro-oxidants in the blood [4–6]. After all, in high concentrations, it results in acute influences of lung toxicity and asthma, inflammation of the lungs, and chest tightness [7,8]. The International Agency for Research on Cancer (IARC), has described cobalt as a probable carcinogen. By EPA, the maximum level of cobalt in drinking water was approved to be 40 μg/L [9]. Industrial wastewater is the cause of water pollution due to heavy metals. The discharge of these pollutants before the removal of wastewater into the environment is crucial in view of public health and pollution control [9].

A lot of traditional processes including chemical precipitation [10], ion exchange [11], flotation [12], coagulation [13], membrane processes [14], solvent extraction [15], and adsorption [16–18] were developed to remove heavy metals from aqueous solutions. Adsorption is a significant process to discharge heavy metals. Adsorption has a lot of benefits namely easy operation, high efficiency, low cost, and production of less sludge volume [19]. Several kinds of materials including activated carbons [20], carbon nanotubes [21], nanosponge biopolymer [22], zeolites [23], chitosan [24], clays [25], and agricultural wastes [3] were investigated to discharge metal cations from aqueous solutions.

In our previous research, we used leaves the power of charge heavy metals. Adsorption has a lot of benefits namely easy operation, high efficiency, low cost, and production of less sludge volume [19]. Several kinds of materials including activated carbons [20], carbon nanotubes [21], nanosponge biopolymer [22], zeolites [23], chitosan [24], clays [25], and agricultural wastes [3] were investigated to discharge metal cations from aqueous solutions.

2. Experimental

2.1. Materials

Herein, all the chemicals utilized were of analytical grade and used as received. The temperature of the solution was controlled by soaking the culture tube in the water bath of Gallen Kamp thermo stirrer (UK) for thermodynamic investigations. The fidelity of the temperature in the water bath was ±0.1°C. Deionized water was utilized throughout the research.

2.2. Adsorbent

Husk of basmati rice was provided by a rice mill in the Punjab Province of Pakistan. To withdraw dust particle, the samples were thoroughly cleaned and were oven-dried at 80°C till constant weight was achieved. The washed and dried rice husk was treated with 1.0 M NaOH. In the NaOH solution, 500 g of rice husk was added to a 2 L beaker. The mixture was stirred vigorously and the whole mixture was heated at 60°C for 2 h. The contents were left overnight at room temperature. After that, the rice husk was washed with water until the neutral pH of the washing was attained. The adsorbent was dried in the oven at 80°C till constant weight and stored in an airtight container and labeled as TRH. Neutron activation analysis (NAA) and atomic adsorption spectrometry (AAS) methods were utilized for the chemical analysis of husk samples for their trace metal contents and attained results were reported [33,34]. These results showed that the quantity of metals such as Na, K, Pb, and Fe were present in μg per g of sample. Silica contents were found to be 18.27 (0.62%) of TRH. The trace quantity of elements present in TRH was studied by utilizing standard procedures.

2.3. Adsorption test

Adsorption test was carried out as reported in our previous work [32,33,35,36]. In a typical procedure, a known amount of TRH was taken into a 25 cm\(^3\) secured cap culture tube along with 4 cm\(^3\) of standard acid solution, and a fixed quantity of stock radiotracer with a known quantity of Co(II) solution was added. Consecutively, the contents were equilibrated on a wrist-action mechanical shaker (Vibromatic (USA)) at a rate of 500 rpm for specific intervals of time. Then, it was centrifuged at 5,000 rpm for phase separation and the supernatant solution was withdrawn for activity measurement. The radioactivity of solutions before (\(A_i\)) and after (\(A_f\)) equilibrium was recorded with a NaI well-type scintillation counter (Canberra Inc., United States) coupled with a counter-scaler (Nuclear Chicago). A volume of 1.0 cm\(^3\) was normally used to measure the activity. All experiments were performed at ambient temperature. The percentage adsorption of Co(II) onto TRH was calculated by utilizing the below equation:

\[
\text{% adsorption} = \frac{A_i - A_f}{A_i} \times 100
\]

where \(A_i\) and \(A_f\) denote initial and final adsorption of Co(II) (counts/min) into, respectively.

Desorption of Co(II) was carried out by immersing a specific quantity of Co(II) loaded TRH into an aqueous solution of HNO\(_3\) (0.1 mol/L) as a desorbing media for a specific time as reported in our previous work [36].

2.4. Characterization

2.4.1. Instrumentation

Fourier transforms infrared (FTIR) spectrum of TRH before and after adsorption of Co(II) was recorded by utilizing attenuated total reflectance (ATR) with FTIR spectrometer (Vector 22, Bruker) having a resolution of 2 cm\(^{-1}\) and total spectral range of 4,000–400 cm\(^{-1}\). The structure of TRH before and after adsorption of Co(II) was studied by field emission scanning electron microscopy (FE-SEM, Sirion200, FEI Company, USA). Energy dispersive X-ray (EDX) analysis was employed to study the adsorption of Co(II) onto TRH.
2.5. Nonlinear adsorption isotherms

Experimental data for adsorption of Co(II) onto TRH was subjected to different nonlinear adsorption isotherms which are as follows:

Nonlinear Langmuir adsorption isotherm is shown as [36]:

\[ C_{eq} = \frac{Q_m C_m}{1 + K_C C} \] (2)

where \( C \) is the concentration of Co(II) solution (mol/L) at equilibrium. The constant \( Q_m \) is monolayer adsorption capacity (mol/g) and \( K_C \) (L/mol) is related to the energy of adsorption. In general \( Q_m \) and \( K_C \) are functions of pH, ionic media, and ionic strength.

Nonlinear Freundlich isotherm is represented as [36]:

\[ C_{eq} = K_F C^{1/n} \] (3)

where “\( K_F \)” and “\( n \)” are Freundlich constants denoting adsorption capacity and adsorption intensity respectively.

Nonlinear D–R equation can be given as [32]:

\[ C_{eq} = C_m \exp(-\beta \varepsilon^2) \] (4)

where \( C_{eq} \) is the quantity of Co(II) adsorbed onto TRH, \( C_m \) (mol/g) is the maximum quantity of Co(II) that can be adsorbed onto TRH under the optimized experimental conditions, \( \beta \) is a constant related to adsorption energy and \( \varepsilon \) (Polyanyi potential) = \( RT \ln(1 + 1/C) \) where \( R \) is the universal gas constant (kJ/mol K), and \( T \) is the absolute temperature (K).

The mean adsorption energy (\( E \)) can be calculated by utilizing the value of \( \beta \) as [32]:

\[ E = \frac{1}{\sqrt{2\beta}} \] (5)

2.6. Adsorption kinetics

Several adsorption models were utilized to investigate the controlling mechanism of the adsorption process such as chemical reaction and diffusion control.

2.6.1. Pseudo-first-order model

The linearized form of the Lagergren pseudo-first-order rate equation is represented as [37,38]:

\[ \log(q_e - q_t) = \log q_e - \frac{K_1 t}{2.303} \] (6)

where \( q_e \) and \( q_t \) show the adsorbed amount of Co(II) at equilibrium and time \( t \) respectively and \( K_1 \) (/min) is the rate constant of the pseudo-first-order model.

2.6.2. Pseudo-second-order model

The linearized form of the pseudo-second-order kinetic model is shown as [39]:

\[ \frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} \] (7)

where \( k_2 \) (g/mg min) is the rate constant of the pseudo-second-order model.

2.6.3. Elovich model

The most interesting model to explain the activated chemisorption is the Elovich model [32]:

\[ q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln t \] (8)

where \( \alpha \) (mg/g min) and \( \beta \) (g/mg) are constant. The parameter \( \alpha \) is considered as initial adsorption rate (mg/g min) and \( \beta \) is related to the extent of surface coverage and activation energy for chemisorption.

2.6.4. Liquid film diffusion model

The liquid film diffusion model is given as [32,37]:

\[ \ln \left( 1 - \frac{q_t}{q_e} \right) = -K_{fd} t \] (9)

where \( K_{fd} \) shows liquid film diffusion rate constant.

2.6.5. Modified Freundlich equation

The modified Freundlich equation was originally developed by Kuo and Lotse [38]:

\[ q_t = k C_0 t^{1/n} \] (10)

where \( k \) shows the apparent adsorption rate constant (L/g min), \( C_0 \) depicts the initial concentration (mg/L) of Co(II) solution, \( t \) shows the contact time (min), and \( m \) represents the Kuo–Lotse constant. The values of \( k \) and \( m \) were utilized to investigate the influence of Co(II) surface loading and ionic strength on the adsorption process. A linear form of modified Freundlich equation is expressed as:

\[ \ln q_t = \ln(k C_0) + \frac{1}{m} \ln t \] (11)

2.6.6. Bangham equation

Bangham equation is expressed as [40]:

\[ \log \log \left( \frac{C_0}{C_0 - q_t m} \right) = \log \left( \frac{k m}{2.303 V} \right) + a \log t \] (12)
where \( V \) is the volume of solution (mL), \( m \) is the weight of adsorbent (g/L), \( \alpha \) (<1) and \( k_c \) (mL/(g/L)) are constants.

2.7. Thermodynamics study

Thermodynamics for adsorption of Co(II) onto TRH was also evaluated. The values of change in Gibb's free energy (\( \Delta G^\circ \)), enthalpy (\( \Delta H^\circ \)), and entropy (\( \Delta S^\circ \)) were determined by using the below equations:

\[
\ln K_c = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}
\]

(13)

\[
K_c = \frac{C_a}{C_e}
\]

(14)

\[
\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ
\]

(15)

where \( K_c, \Delta G^\circ, \Delta H^\circ, \) and \( \Delta S^\circ \) are equilibrium constant, change in Gibb's free energy (kJ/mol), enthalpy (kJ/mol), and entropy (J/mol K), respectively.

3. Results and discussion

3.1. FTIR test

Fig. S1 represents the FTIR spectrum of virgin TRH. The peaks at 1,737.8; 1,435.6; and 1,365.4 cm\(^{-1}\) were attributed to C=O stretching, OH bending of the adsorbed H\(_2\)O, and aliphatic C–H bending, respectively [41]. The peak at 3,400–3,200 cm\(^{-1}\) was due to the surface O–H stretching, whereas aliphatic C–H stretching had broadband at 2,921–2,851 cm\(^{-1}\). The peaks at 1,217.0; 1,365.4; 1,737.8; and 1,027.4 cm\(^{-1}\) were due to the carboxyl group on TRH in the range of reported peaks at 1,208–1,230; 1,367–1,371; 1,740 and 1,029 cm\(^{-1}\) for carboxyl group [42,43]. Except, the peak at 1,073.0 cm\(^{-1}\) coincides with the anti-symmetric stretching vibration of Si–O, whereas at 476.2 cm\(^{-1}\) showed the bending vibration of Si–O–Si bond [42,44,45]. The lack of peaks related to non-conjugated carbonyl functional groups in the TRH spectrum represented hydrolyses of carbonyl groups during NaOH treatment.

Fig. S1 indicates the FTIR spectrum of TRH after adsorption of Co(II). The changes observed in the spectrum of Co(II) loaded TRH were the slight shifts of 1,739.4 and 1,367.3 cm\(^{-1}\) peak of carboxyl, carboxyl functional groups and a decrease in their intensities were observed. A shift of ~12 and 11 cm\(^{-1}\) was seen in 1,217.0 and 1,029 cm\(^{-1}\) peak. It suggested the involvement of these functional groups in Co(II) adsorption onto TRH. Similar results were reported in the literature for the adsorption of cobalt ions on lignocellulose/montmorillonite nanocomposite [46].

3.2. Scanning electron microscopy and energy-dispersive X-ray tests

The structure of TRH before and after adsorption of Co(II) was investigated by using scanning electron microscopy (SEM). SEM images of virgin and Co(II) loaded TRH are represented in Fig. S2. Results showed that the surface roughness of TRH was changed significantly after Co(II) adsorption. The surface of the adsorbent became smooth because of Co(II) adsorption. The pores present onto TRH were much greater in size than the ionic radius of cobalt (0.088 nm) which supported its adsorption into the pores of TRH. The adsorption capacity was enhanced from 1.385 × 10\(^{-5}\) to 1.05 × 10\(^{-4}\) mol/g for Co(II) because of the creation of more active sites of TRH.

EDX test of Co(II) loaded TRH was utilized to determine the presence of Co(II) onto TRH. EDX image of Co(II) loaded TRH is shown in Fig. S3. The metal ion peaks located at different energy levels ranging 0.550–7.650 keV represented its adsorption onto TRH.

3.3. Effect of operating factors

The effect of operating factors such as contact time, amount of TRH, initial concentration of Co(II) solution, and temperature on the percentage removal of Co(II) was studied. The details are reported below.

3.3.1. Effect of contact time

It was elucidated keeping amount TRH, shaking speed, initial concentration of Co(II) solution, and temperature on the percentage removal of Co(II) was studied. Results showed that the percentage removal of Co(II) from wastewater was small. Therefore, it was utilized in further studies.

3.3.2. Effect of amount of TRH

The effect of the amount of TRH was studied keeping other operating factors constant at room temperature. It was elucidated keeping amount TRH, shaking speed, initial concentration of Co(II) solution, and temperature on the percentage removal of Co(II) was studied. Fig. 1a depicts the effect of the amount of TRH on the percentage discharge of Co(II) from wastewater at ambient temperature. It was enhanced from 37% to 98.50% with contact time at room temperature. It was higher than untreated rice husk [36]. In the start, the removal of Co(II) from wastewater was very fast due to the presence of a large number of vacant sites onto TRH and interaction was developed between Co(II) and adsorption sites. Then, there was no large increase in the removal of Co(II) after this equilibrium was reached and no further crucial increase in adsorption was achieved with contact time. It slowed down due to the movement of Co(II) into the interior pores of TRH when all surface sites were occupied.

3.3.3. Effect of initial concentration of Co(II) solution

The effect of initial concentration of Co(II) onto the percentage removal of Co(II) from wastewater was investigated keeping other operating endowments constant at ambient temperature and results are shown in Fig. 1c. Results showed that the percentage removal of Co(II) from wastewater was decreased with enhancing the initial concentration of Co(II).
at room temperature. At higher initial concentrations, some of Co(II) were left unabsorbed due to saturation of adsorption spaces. More binding spaces existed at a low concentration of metal ions. The number of ions competing for present binding spaces onto TRH was increased with enhancing concentration on metal ions.

3.3.4. Effect of temperature

Fig. 1d represents the effect of temperature on the removal of Co(II) from wastewater by utilizing TRH as an adsorbent. It was studied keeping other operating factors constant. It was found that the percentage removal of Co(II) was increased from 61% to 81% with temperature rise. The increase in adsorption of Co(II) may be either due to the acceleration of some initially slow adsorption stages or to the establishment of some new active spaces onto the surface of the TRH with the rise in temperature [32,36].

3.4. Adsorption isotherms

Fig. 1d represents the effect of contact time, (b) amount of TRH, (c) initial concentration of Co(II) solution, and (d) temperature on the percentage removal of Co(II) from aqueous solution.

![Graphs showing the effect of contact time, amount of TRH, initial concentration of Co(II) solution, and temperature on the percentage removal of Co(II).]

Fig. 2. Nonlinear plots of Langmuir, Freundlich, and D–R isotherms for adsorption of Co(II) onto TRH.

in Table 1. For adsorption of Co(II) onto TRH, the values of $K_L$ were calculated from Langmuir constant $K_L$ and initial concentrations of Co(II) and are given in Table 1 which showed that adsorption of Co(II) was the favorable process.

Fig. 2 represents Freundlich isotherm for adsorption of Co(II) onto TRH and determined values of $K_f$ and $n$ are given in Table 1. The value of $n$ was utilized to signify the heterogeneous surface of the TRH (adsorbent). The values of “n” ranges from 2 to 10 indicating good adsorption, 1–2
The value of adsorption-free energy ($E$) was 22.43 ± 2.85 kJ/mol. It showed that adsorption of Co(II) onto TRH was a physical adsorption process.

### Table 1
Determined parameters of Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherms by nonlinear method

<table>
<thead>
<tr>
<th>Adsorption isotherms</th>
<th>Isotherm parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir isotherm</td>
<td>$Q_m$ = $9.35 \times 10^{-3}$, $K_L = 235,150$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 0.001-0.10$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = 1.76 \times 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>Freundlich isotherm</td>
<td>$K_f = 2.27 \times 10^{-4} \pm 3.95 \times 10^{-5}$, $n = 8.240 \pm 1.36$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = 3.00 \times 10^{-10}$</td>
<td></td>
</tr>
<tr>
<td>Dubinin–Radushkevich (D–R)</td>
<td>$C_a$ = $(1.300 \pm 0.086) \times 10^{-4}$, $B = (9.900 \pm 1.26) \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>isotherm</td>
<td>$E = 22.43 \pm 2.85$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = 1.60 \times 10^{-10}$</td>
<td></td>
</tr>
</tbody>
</table>

### Table 2
AdSORption capacities of cobalt for different adsorbents

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan coated perlite beads</td>
<td>1.406</td>
<td>[48]</td>
</tr>
<tr>
<td>Coir pith</td>
<td>7.29</td>
<td>[49]</td>
</tr>
<tr>
<td>Bentonite</td>
<td>4.95</td>
<td>[50]</td>
</tr>
<tr>
<td>Crab shell</td>
<td>0.92</td>
<td>[51]</td>
</tr>
<tr>
<td>Chitosan coated perlite beads</td>
<td>1.208</td>
<td>[52]</td>
</tr>
<tr>
<td>Sheep manure</td>
<td>0.5759</td>
<td>[53]</td>
</tr>
<tr>
<td>Modified sheep manure</td>
<td>1.085</td>
<td>[54]</td>
</tr>
<tr>
<td>Arca shell</td>
<td>2.853</td>
<td>[55]</td>
</tr>
<tr>
<td>Rice husk</td>
<td>2.500</td>
<td>[56]</td>
</tr>
<tr>
<td>Natural bentonite</td>
<td>3.834</td>
<td>[57]</td>
</tr>
<tr>
<td>Treated rice husk</td>
<td>19.203</td>
<td>Present study</td>
</tr>
</tbody>
</table>

3.5. Adsorption kinetics study

The plot of pseudo-first-order for adsorption of Co(II) onto TRH is represented in Fig. 3a. The determined values of $k_f$ and $q_e$ from slope and intercept of the plot are given in Table 3. The value of the correlation coefficient ($R^2$) was 0.980. Further, there was a large difference between calculated adsorption capacity values ($q_{exp}$) and experimental adsorption capacity ($q_{exp}$). Therefore, it does not explain the rate process.

Fig. 3b shows the plot of the pseudo-second-order model. The value of adsorption capacity was determined from the slope and is given in Table 3. It was very close to the experimental value (3.525 mg/g). Further, the value of the correlation coefficient was close to unity ($R^2 > 0.999$). It indicated that experimental data fitted well to the pseudo-second-order model.

Fig. 3c shows the plot of the Elovich model. The calculated values of $\alpha$ and $\beta$ from slope and intercept are given in Table 3. The value of correlation coefficient for the liquid film diffusion model was lower than the pseudo-second-order model.

The plot of $\ln(1 – q_e/q_m)$ vs. time for the liquid film diffusion model is depicted in Fig. 3d. The calculated value of $K_{ps}$ from the slope of the linear plot is given in Table 3. The value of the correlation coefficient for the liquid film diffusion model was lower than the pseudo-second-order model. It showed that it cannot be sufficient to explain experimental data.

Fig. 4a indicates the plot of the modified Freundlich equation for adsorption of Co(II) onto TRH. The measured values of $m$ and $k$ from slope and intercept are given in Table 3. The value of the correlation coefficient ($R^2$) was 0.983. It revealed that experiment data was not fitted to the modified Freundlich equation.

Fig. 4c shows the plot of $\ln(C/C_o – q_m)$ vs. $\ln t$ for Bangham equation is indicated in Fig. 4b. The determined values of $\alpha$ and $m$ are given in Table 3. The double logarithmic plot did not give a linear curve for adsorption of Co(II) denoting that the diffusion of adsorbate into pores of the adsorbent (TRH) is not the only rate-controlling step [36]. It may be that both film and pore diffusion were significant to a different extent in adsorption of Co(II) onto TRH.

### 3.6. Adsorption thermodynamics

Fig. 4c shows the plot of $\ln K_c$ vs. $1/T$ for adsorption of Co(II) onto TRH. The measured values of thermodynamic parameters are given in Table 4. The positive value of enthalpy ($\Delta H^\circ$) revealed that adsorption of Co(II) was an endothermic process. Moreover, the positive value of entropy ($\Delta S^\circ$) exhibited enhanced movement in randomness at the adsorbent–adsorbate interface during adsorption of Co(II) onto TRH. The negative value of Gibb’s free energy indicated that the adsorption process was spontaneous in nature. The decrease in values of Gibb’s free energy with temperature rise represented the decline in the feasibility of adsorption at elevated temperatures.
3.7. Recovery of Co(II)

The recovery of Co(II) and regeneration of TRH are important for the wastewater treatment process. Many efforts were made to recover Co(II) from the TRH surface by utilizing HNO₃ as desorbing media. HNO₃ solution of different molarities was used in batch mode. For this, the fixed amount of Co(II) loaded TRH was shaked with HNO₃ for the specific time for recovery of Co(II). Several experiments were performed by varying concentrations of HNO₃ solutions for desorption of Co(II) from TRH. The maximum recovery of Co(II) (~90%) was achieved with 1.0 mol/L HNO₃ solution from TRH within 5 min time.

4. Conclusions

In this manuscript, the adsorptive removal of Co(II) from wastewater by using TRH was evaluated. The removal of Co(II) was increased with the contact time, amount of TRH, and temperature whereas decreased with an initial concentration of Co(II) solution. Equilibrium isotherm results exhibited that experimental data for adsorption of Co(II) onto TRH followed nonlinear Langmuir isotherm model. Adsorption kinetics results revealed that adsorption of Co(II) onto TRH fitted to pseudo-second-order model. Thermodynamic evaluation showed that adsorption of Co(II) onto TRH was endothermic and spontaneous process. Further, the recovery of Co(II) was maximum for...
HNO₃ (1.0 mol/L) solution. Hence, TRH could be employed as an extraordinary adsorbent for the removal of Co(II) from wastewaters.

Acknowledgments

The authors are highly thankful to Higher Education Commission (HEC), Pakistan for financial support.

Table 4

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (J/K mol)</th>
<th>ΔG° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>286.16</td>
<td>-0.978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.16</td>
<td>-1.264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>298.16</td>
<td>-1.665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>303.16</td>
<td>-1.952</td>
<td>15.406</td>
<td>57.285</td>
</tr>
<tr>
<td>313.16</td>
<td>-2.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333.16</td>
<td>-3.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>338.16</td>
<td>-3.957</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. (a) Modifies Freundlich equation, (2) Bangham equation, and (c) the plot of 1/T vs. lnK for adsorption of Co(II) onto TRH.

References


[34] X. Zhang, X. Wang, Z. Chen, Radioactive Cobalt(II) removal from aqueous solutions using a reusable nanocomposite:


Supplementary information

Fig. S1. FTIR spectrum of (a) virgin TRH and (b) cobalt-loaded TRH.
Fig. S2. SEM images of (a) virgin TRH and (b) cobalt-loaded TRH.

Fig. S3. EDX graph of Co(II) loaded TRH.