Eco-friendly cost-effective approach for synthesis of ZnO nanoparticles and loaded on worn tire powdered activated carbon as a novel adsorbent to remove organic dyes from aqueous solutions: equilibrium, kinetic, regeneration and thermodynamic study

Shirin Afshin, Yousef Poureshg, Yousef Rashtbari, Mehdi Fazlzadeh, Farshad Bahrami Asl, Asghar Hamzezadeh, Seyedeh Mahtab Pormazar, * Corresponding authors.

*Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran, Tel. +98 9143540015; emails: a.hamzezade@yahoo.com (A. Hamzezadeh), Tel. +98 9014515339; email: shirinafshin1990@gmail.com (S. Afshin), Tel. +989148092356; email: yusef.poureshg@gmail.com (Y. Poureshg), Tel. +98938162079; email: u3f.rashhtbari@gmail.com (Y. Rashtbari)

Department of Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran, email: m.fazlzadeh@gmail.com

Department of Environmental Health Engineering, School of Health, Urmia University of Medical Sciences, Urmia, Iran

Department of Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Tel. +989139672497; email: smp.mahtab@gmail.com

Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Received 11 June 2020; Accepted 1 April 2021

ABSTRACT

In the present research, activated carbon (AC) was prepared from worn tire specimens and was coated with zinc oxide nanoparticles (ZnO) obtained from pomegranate peel extract. The prepared adsorbent (AC-ZnO) was characterized by field-emission scanning electron microscopy, Brunauer–Emmett–Teller, X-ray diffraction and Fourier-transform infrared spectroscopy analyses. The performance of the AC-ZnO was investigated to remove Acid Black 1 (AB1) dye from aqueous solutions. The results of the adsorption experiment indicated that the removal efficiency declined with increasing dye concentration and solution pH but a decrease in adsorbent dosage caused the efficiency to decline. The findings suggest that the adsorption of AB1 onto the AC-ZnO obeyed the pseudo-second-order model. Equilibrium data were analyzed using the Langmuir and Freundlich isotherm. The data were best described by the Freundlich isotherm model and the maximum adsorption capacity of the AC-ZnO was 93.46 mg/g. Based on the thermodynamic parameters, the adsorption process was non-spontaneous at all temperatures and also the process was endothermic. The AC-ZnO could be regenerated and reused for several cycles and also has high efficiency (71.21%) in removing AB1 dye in the actual wastewater sample. It was implied that AC-ZnO could be employed effectively as a cheap and environmentally friendly adsorbent for AB1 dye removal from wastewater-containing dyes.

Keywords: Green synthesis; Activated carbon; Zinc oxide nanoparticles; Acid Black 1; Adsorption

* Corresponding authors.
1. Introduction

The discharge of dyes from textile industries into water resources has led to a significant increase in environmental pollution [1]. Over 100,000 different types of dyes are produced annually with a production rate of 7×10^6 tons/y, which about 36,000 tons/y are used by textile industries [2]. Among these, azo dyes are the largest and the most important group of synthetic dyes, as they are accounting for more than half of the synthetic dyes produced each year [3]. These organic dyes bearing the functional group (-N=N), which is a carcinogen, toxic and non-biodegradable in nature [4]. Dyes are responsible for waterborne diseases exhibiting symptoms such as hemorrhage, nausea, dermatitis, ulceration of the skin and mucous membranes, kidney damage, and a loss of bone marrow leading to anemia. Therefore, dyes must be removed from wastewaters to eliminate health hazards and prevent the destruction of the ecosystem [5]. In the last few decades, removing dyes from textile wastewaters has become a major challenge. Several treatment technologies such as coagulation and flocculation [6], electro-coagulation [7], electro-Fenton [8], chemical oxidation [9,10], membrane [11] and adsorption [12] have been employed to treat textile wastewaters. The adsorption process has been introduced as one of the best methods due to its simplicity, low cost, large availability and high efficiency [13–15]. From different types of materials used as adsorbents, activated carbon (AC) has been widely applied for the removal of dye from aqueous environments because of its high adsorption efficiency [16]. Although AC is an effective adsorbent, their separation from aqueous solutions is not difficult [25]. Amongst various nanoparticles, ZnO has been attracting great attention because of its dye adsorption properties. It benefits from having very spacious pores and easily available [29]. Since ZnO contains about 80% zinc, it has high adsorption capacity and well predictable reaction kinetics [29]. Various chemical methods have been proposed for the synthesis of ZnO NPs, such as the reaction of zinc with alcohol, vapor transport, hydrothermal synthesis, precipitation method, etc. However, these methods suffer various disadvantages due to the involvement of high temperature and pressure conditions and the use of toxic chemicals. Green synthesis approaches are gaining interest circumventing the high costs and usage of toxic chemicals and harsh conditions for reduction and stabilization [30]. Recently, plant extracts including *Peganum harmala* seed [31], flower [32], *Cassia fistula* plant [33], *Hibiscus sabdariffa* leaf [34], *Moringa oleifera* leaf [35], and so forth have been used to synthesize ZnO and other nanoparticles.

In the present study, the extract of pomegranate peel was utilized as a stabilizing agent for the preparation of the ZnO nanoparticles (ZnO NPs). Then, the ZnO NPs were coated on the AC derived from the worn tire specimens. According to the literature review, no studies on the uptake of Acid Black 1 (AB1) dye by the AC-ZnO have been conducted to date. Hence, in this study, the efficiency of the AC-ZnO in AB1 dye removal at different operational parameters was investigated.

2. Materials and methods

2.1. Materials

AB1 was obtained from Alvan Sabet Co., Hamadan, Iran. The properties of the dye have been shown in Table 1 [36]. 0.1 M NaOH, and HCl, used to adjust solution pH and zinc chloride (ZnCl₂), used to synthesize the adsorbent, were purchased from Merck & Co., Germany.

2.2. Activated carbon preparation

The worn tire specimens were first crushed to 0.5–2 cm. Next, they were immersed in concentrated phosphoric acid at room temperature for 48 h for activation. Then, they were poured into a cylindrical steel reactor. To accomplish pyrolysis, the reactor was transferred to an electric furnace (HL40P) at a temperature of 500°C and a speed of 5°C/min for 2 h. Afterwards, the product of this step was sonicated by an ultrasonic device with a frequency of 37 kHz to generate powdered activated carbon and to create more pores. The obtained powder was then washed 4–6 times with deionized water to reach pH 7, and placed in an oven at 110°C for 2 h to dry completely. The resulting activated carbon was finally stored in a closed container away from moisture for future use [37].

2.3. Production of the zinc oxide nanoparticles by a green synthesis method

The pomegranate peel extract was used to synthesize the nanoparticles in a greenway. To end this, 30 g of the pomegranate peel was added to 500 mL of distilled water and mixed by a magnetic stirrer at 300 rpm at 80°C for 1 h. The extract was obtained and then cooled to ambient temperature. The solution was filtered using a 0.45 μm filter. The extract was mixed with zinc chloride (1 M) in a ratio of 2:3. The nanoparticle synthesis was detectable by the formation of white clusters. The synthesized nanoparticles...
were dried at ambient temperature for 1–2 d. In order to eliminate the interference from organic matter in the experiments, the nanoparticles were placed in an electric oven at 400°C for 2 h. Finally, the resulting product was stored for future use [31].

2.4. Loading of ZnO nanoparticles on activated carbon (AC-ZnO)

After the production of the AC and the synthesis of the zinc oxide nanoparticles, 0.05 g of the zinc nanoparticles was poured into 200 mL of distilled water and placed on a magnetic stirrer for 10 min to make the solution uniform. Then, 5 g of the AC was poured into the solution and placed on a magnetic stirrer at 500 rpm for 2 h to load the nanoparticles onto the AC. The modified AC was separated from the solution by means of a filter paper and then washed with double distilled water several times. The result production was placed in an oven at 95°C for 10 h to dry completely [38].

2.5. Characterization of adsorbent

The surface morphology of the non-modified and modified adsorbents was investigated with field emission scanning electron microscopy (FE-SEM). Fourier-transform infrared spectroscopy (FTIR) was utilized to characterize the surface functional groups of the AC and AC-ZnO using BRUKER Tensor 27 model FTIR spectrometer. X-ray diffraction (XRD) was employed to assess the phase structure of the samples by a Philips PAN-Analytical Diffractometer (Netherlands) equipped with a Cu Ka X-ray source. Brunauer–Emmett–Teller (BET) surface area was assessed by measuring the nitrogen adsorption–desorption isotherms at 77 K using Quantachrome (USA). The surface area, pore size and pore volume were evaluated using the t-plot method.

2.6. Batch adsorption study

So as to perform the batch adsorption experiments, 100 mL of the synthetic wastewater containing different concentrations of the dye (25–150 mg/L) was poured into a 100 mL Erlenmeyer glass flask. A certain dose of the adsorbent (0.25–2 g/L) was added to the solution and the solution pH was adjusted in the range of 3 to 11 using 0.1 M NaOH and 0.1 M HCl solution. The mixture was stirred at the rapid speed of 200 rpm at predetermined time intervals (2–90 min). After the adsorption process, the samples were filtered by using a 0.45-μm membrane filter. The residual concentration of AB1 dye was determined using a UV-vis spectrophotometer (HACH DR5000, USA) at the maximum wavelength of 618 nm [36]. The removal percentage of the dye by the AC-ZnO was calculated according to the following equation [39]:

$$R(\%) = \frac{C_0 - C}{C_0} \times 100$$

where R (%) is dye removal efficiency, C_0 (mg/L) is the initial dye concentration (mg/L) and C is dye concentrations at time t (min).

The adsorption capacity of the AC-ZnO adsorbent to uptake AB1 Dye at the equilibrium was determined by the following equation:

$$q_e \text{ (mg/g)} = \frac{C_0 - C_e}{m} V$$

where q_e (mg/g) is adsorption capacity, C_0 (mg/L) is the initial dye concentration, C_e (mg/L) is the equilibrium concentration of the dye in solution, V (L) is the volume of the aqueous solution and m (g) is the mass of the adsorbent.

2.7. Point of zero charge

The point of zero charge (pH$_{pzc}$) was used to quantify the net charge of the adsorbent (positive or negative). For this purpose, the initial pH values were adjusted in the range from 2 to 12 by adding 0.1 M HCl or 0.1 M NaOH. Then, 0.05 g of the adsorbent was added to several 100 mL Erlenmeyer flasks. The suspensions were shaken for 24 h until the equilibrium was achieved. Finally, the pH of the supernatant was measured, and the final pH values were plotted against the initial pH. The pH$_{pzc}$ is the point of intersection of the resulting curve, where initial pH = final pH [40].

3. Results and discussion

3.1. Characterization of the synthesized adsorbent

The shape and surface morphology of the non-modified and modified AC were investigated by a FE-SEM. Fig. 1 Table 1 Characteristics of AB1 dye

<table>
<thead>
<tr>
<th>Dye symbol</th>
<th>AB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical structure</td>
<td>![AB1 Structure]</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Na2C${22}$H$_{14}$N$_6$O$_9$S$_2$</td>
</tr>
<tr>
<td>Molecular mass (g mol$^{-1}$)</td>
<td>616.49</td>
</tr>
<tr>
<td>λ_{max} (nm)</td>
<td>618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye symbol</th>
<th>AB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical structure</td>
<td>![AB1 Structure]</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Na2C${22}$H$_{14}$N$_6$O$_9$S$_2$</td>
</tr>
<tr>
<td>Molecular mass (g mol$^{-1}$)</td>
<td>616.49</td>
</tr>
<tr>
<td>λ_{max} (nm)</td>
<td>618</td>
</tr>
</tbody>
</table>
shows the FE-SEM images of the AC and AC-ZnO. It seems that the ZnO nanoparticles have occupied the unevenness of the surface of the AC. As can be seen, the ZnO nanoparticles were relatively homogeneous and uniform on the adsorbent surface. In fact, the FE-SEM image illustrates that the filled pores of the AC were occupied by the ZnO nanoparticles giving a homogeneous coverage with more adsorption active sites.

The FTIR analysis was used to characterize and determine the surface functional groups of the adsorbent (Fig. 2). The plant extract showed a broad peak range at 3,200–3,500 cm\(^{-1}\) which corresponds to phenolic functional groups as the main stabilizing agents for the ZnO nanoparticles [41]. The strong peak in the range of 1,126–1,190 cm\(^{-1}\) indicates carbonyl group related heterocyclic compounds of the plant extracts [42]. The absorption peak observed in the region of 900–1,300 cm\(^{-1}\) indicated the phosphorus-containing functional groups resulting from the phosphoric acid activation, used during the preparation process [43]. The broad absorption band observed at 3,471 cm\(^{-1}\) represent the O–H stretching vibrations of physically adsorbed water molecules in the ZnO and AC functional group. The peaks at 2,931 and 2,901 cm\(^{-1}\) are attributed to the C–H stretching of the methyl groups. The vibration band at 1,780 cm\(^{-1}\) corresponds to the C=O stretching of the carbonyl group [44]. The absorption bands at 1,627 cm\(^{-1}\) represent C=C groups (carbonization). Also, the minor bands observed at 615–617 cm\(^{-1}\) confirms the presence of the ZnO nanoparticles [45]. Some small peaks were also disappeared in the AC-ZnO indicating the ZnO nanoparticles coating on the AC.

The XRD pattern for the adsorbent at angle 2\(\theta\) has been shown to determine the crystalline phase and structural properties of the nanoparticles. The results of this analysis showed that the peaks produced in 31.75\(^{\circ}\), 34.45\(^{\circ}\), 36.32\(^{\circ}\), 47.52\(^{\circ}\), 59.6\(^{\circ}\), 62.85\(^{\circ}\), 66.45\(^{\circ}\), 67.95\(^{\circ}\), and 69.15\(^{\circ}\) degrees were the indicators of ZnO in the structure of the synthesized adsorbent (Fig. 3). Moreover, the formation of sharpened and pulled peaks at angles 23.61\(^{\circ}\), 24.1\(^{\circ}\), and 26.5\(^{\circ}\) was related to carbon, hence it could be stated that ZnO was successfully synthesized [46].

The nitrogen adsorption/desorption isotherms were applied to characterize the BET specific surface area, pore-volume, and pore size of the non-modified and modified AC. Fig. 4 depicts the N\(_2\) adsorption/desorption isotherms of the AC and AC-ZnO. The isotherms were categorized as type IV according to the IUPAC isotherm hysteresis loops, which proves the existence of mesopores in both adsorbents at high pressures (\(p/p_0 > 4\)). In addition, according to Fig. 3, as the relative amount of the ZnO nanoparticles increased, the mesopore volume fraction also steadily increased. The obtained results of BET for the AC and AC-ZnO have been shown in Table 2. As can
be seen, the AC-ZnO has better property than the AC in all parameters, particularly in surface area. The specific surface area, pore volume and pore size of the AC-ZnO were 345.87 m2/g, 0.3976 m2/g and 3.01 nm, respectively. The result confirms that the modified AC by the ZnO nanoparticles has smaller-sized nanoparticles and possesses a high specific surface area, which is suitable for the adsorption of pollutants.

3.2. Effect of operational parameters on dye removal

3.2.1. Solution pH

The pH of the solution and the point of zero charge play an important role in the adsorption process, especially for dye adsorption. The pH of the solution controls the magnitude of electrostatic charges imparted by ionized dye molecules. Therefore, the adsorption efficiency varies with the pH of the medium used [47,48]. The effect of pH on AB1 dye removal by the AC-ZnO from solution was studied under identical conditions. The results have been presented in Figs. 5a and b. It is indicated that the maximum dye removal with 74.29% efficiency was observed at pH 3. With increasing pH, the adsorption capacity declined and the efficiency was achieved 40.61% at pH 11, which may be explained by the surface charge of the AC-ZnO. AB1 dye has negatively charged due to the presence of sulfonate group in its structure, as shown in Fig. 1. When AB1 is dissolved in an aqueous solution, the sulfonate groups on its structure are dissociated and converted to anionic ions [49]. At acidic pH, the surface of the AC-ZnO becomes protonated and its surface charge becomes positive, which is suitable for adsorbing anionic dyes, and the removal efficiency of AB1 dye enhanced [50]. As the pH of the solution increased, the number of negatively charged sites on the adsorbent surface went up, which is not suitable for anionic dye adsorption [51]. In addition, large quantities of hydroxide ions (OH$^-$) present at alkaline pH compete with dye molecules for adsorption on the active sites [52]. Thus, electrostatic interaction is the major adsorption mechanism. ACs are amphoteric substances that can have a positive or negative surface charge, and therefore the pH of the solution affects adsorbent charge and electrostatic interactions between the dye and AC-ZnO [53]. The
the pHpzc of the AC-ZnO corresponds to the solution pH where the Zeta potential of the AC-ZnO is zero. It is noticed that the ranges where the surface charge is positive. Fig. 4b shows the Zeta potential of the AC-ZnO. Because, as the amount of adsorbent increases, the number of active sites on the surface of the adsorbent and the ratio of the number of dye molecules to the number of adsorption sites, resulting in a decrease in surface area and accordingly an increase in propagation path length [61]. Similar behavior of adsorption parameters against the adsorbent dose was reported by Rehman et al. [61].

3.2.2. Adsorbent dose

The study of the effect of adsorbent dose provides information on the effectiveness of the adsorbent and the ability to remove one type of contaminant with a minimum dosage, which is suitable for its wide range of applications [57]. In this study, some experiments were conducted at various doses (0.25–2 g/L) to determine the effect of adsorbent dose on the uptake of ABI dye by the AC-ZnO. As can be observed from Fig. 6, with increasing the adsorbent dose from 0.25 to 1.5 g/L, the percentage of dye removal increased significantly. Because, as the amount of adsorbent increases, the number of active sites on the surface of the adsorbent and the ratio of the number of dye molecules to the number of adsorption sites, resulting in a decrease in surface area and accordingly an increase in propagation path length [61]. Similar behavior of adsorption parameters against the adsorbent dose was reported by Rehman et al. [61].

3.2.3. Initial dye concentration

The effect of initial ABI dye concentration was investigated over the range of 100–350 mg/L, while other parameters were kept constant. The effect of initial ABI dye concentration on the sorption efficiency and adsorption capacity has been given in Fig. 7. It was found that the adsorption efficiency and adsorption capacity had opposite trends against increasing initial dye concentration. With raising initial dye concentration, the efficiency of dye removal decreased from 97.79 to 43.87 mg/L while the adsorption capacity increased from 65.19 to 102.37 mg/g. This phenomenon can be described as, at low concentrations, the ratio of the number of dye molecules to the number of active sites available at the adsorbent surface is lower; as a result, dye molecules have a more opportunity to reach active sites and, in turn, the uptake efficiency is higher. The rate of ABI adsorption decreased with increasing initial dye concentration, because the adsorbent sites are occupied by dye molecules and they compete with each other for the fixed number of binding sites, thus, the sufficient active sites required for ABI adsorption was not available at higher initial concentrations [62,63]. The increased adsorption capacity at higher initial dye contents can be attributed to enhanced driving force leading to an increase in the rate of dye diffusion [64]. A similar trend of Direct Red-31 and Direct Orange-26 dyes adsorption efficiency and adsorption capacity of rice husk against the initial concentration was reported by Safa and Bhatti [65].

3.2.4. Contact time and initial dye concentration

The effect of contact time on the adsorption of ABI dye by the AC-ZnO was examined at different initial ABI dye concentrations of 25, 50, 100, 150 mg/L and different time intervals of 2, 4, 6, 8, 10, 15, 30, 45, 60 and 90 min while other parameters were kept constant (Fig. 8). It can be easily observed that the adsorption efficiency of ABI dye by the AC-ZnO decreased with increasing initial dye concentration. At lower concentrations, the dye was rapidly adsorbed on the AC-ZnO adsorbent, but active sites on the AC-ZnO surface were occupied gradually with increasing dye concentration, thereby creating a repulsive force between the dye molecules in the solution and on the surface and negatively charged of anionic dye, higher adsorption efficiency is expected. Similar behavior has been reported in the literature for the adsorption of anionic dyes [54,55] and ionic dye-activated carbon cloth systems [56].

Fig. 5. Effect of pH on the removal of ABI (contact time: 30 min; initial dye concentration: 100 mg/L; solution temperature: 25°C; AC-ZnO dose: 1 g/L (a) and pHpzc (b)).

Fig. 6. Effect of pH on the removal of ABI (contact time: 30 min; initial dye concentration: 100 mg/L; solution temperature: 25°C; AC-ZnO dose: 1 g/L (a) and pHpzc (b)).
Therefore, the repulsive force leads to reducing the dye adsorption. Moreover, the adsorption process was very fast in the early phase, and then gradually increased until the equilibrium. The equilibrium was attained within 60 min for 25 mg/L of dye concentration, and for other concentrations achieved 90 min. In the rapid phase, many vacant sites are available on the sorbent and adsorption is fast, whereas, with the occupation of these sites, the driving force decreases, causing the rate of adsorption to decrease [63,67]. Similar observations have also been reported by other researchers [68–70].

3.2.5. Isotherm modeling

The adsorption isotherm is the amount of pollution which is adsorbed per unit mass of an adsorbent as a function of equilibrium concentration. Various isotherm models have been used to evaluate dye adsorption mechanism such as Langmuir, Freundlich, Dubinin–Radushkevich, Redlich–Peterson, Sips, and Temkin, the most common of which are Langmuir and Freundlich [71,72]. The Langmuir isotherm describes monolayer adsorption at specific homogeneous adsorption sites with the identical sorption energies, and the interaction among adsorbed molecules can be negligible [73,74]. The linear form of the Langmuir isotherm equation can be represented as follows:

\[
\frac{1}{q_e} = \frac{1}{q_{\text{max}}} + \frac{1}{b q_{\text{max}}} C_r
\]

(3)

where \(q_e \) is the equilibrium dye concentration on the adsorbent (mg/g), \(C_r \) is the equilibrium concentration of the dye in solution (mg/L), \(q_{\text{max}} \) is the maximum monolayer capacity of the adsorbent (mg/g) and \(b \) is the adsorption equilibrium Langmuir constant (L/mg) [75]. The Freundlich isotherm model assumes multi-layer adsorption and heterogeneous pollution on the adsorbent surface [76]. Its linear form can be as follows:

\[
\log q_e = \log K_f + \frac{1}{n} \log C_r
\]

(4)

where \(q_e \) and \(C_r \) are the same as mentioned above; \(K_f \) is the Freundlich constant (mg/g)(L/mg)^{1/n} and \(n \) is heterogeneity factor.

The graph of the Langmuir and Freundlich isotherms has been presented in Fig. 9. Also, the calculated values for the isotherm parameters have been indicated in Table 3. The value of the correlation coefficients (R^2) for the Freundlich isotherm was 0.9622 which is close to 1 and higher than the Langmuir isotherm (0.7882). Thus, the Freundlich model was suitable for adsorption isotherm data, and it confirmed that a multilayer AB1 dye adsorption occurred on the heterogeneous surfaces of the AC-ZnO. The value of heterogeneity factor (n) should be between 1 and 10 and as the slope 1/n gets closer to zero, the surface becomes more heterogeneous [71]. In this study, the n value was estimated at 9.62 and the 1/n value was closed to 0, which represents the heterogeneous adsorbent surface and the existing high energy sites on the surface of the AC-ZnO [67]. Similar isotherm results were obtained for various pollutant-activated carbon systems in the literature [77,78].

Also, the adsorption capacity of the AC-ZnO for AB1 removal was 93.46 mg/g, illustrating a relatively good adsorption capacity compared to the AC prepared from
scrap tires (14.51 mg/L) reported by Hoseinzadeh et al. for AB1 adsorption [79]. A comparison between the adsorption capacity of AC-ZnO and other adsorbents for AB1 is shown in Table 4. Based on this comparison, AC-ZnO has a relatively high adsorption capacity compared to other adsorbents reported in the literature, suggesting that it is a promising adsorbent for anionic dye removal from wastewater.

3.2.6. Kinetic study

The pseudo-first-order and pseudo-second-order models are used to demonstrate the regular adsorption pattern and predict the rate-controlling step. They are given by equations [86]:

Pseudo-first-order model: \[\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303} t \]

Pseudo-second-order model: \[\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \]

where \(q_e \) is the amount of dye adsorbed (mg/g) at equilibrium, \(q_t \) is the amount of dye adsorbed at time \(t \) (min), \(k_1 \) and \(k_2 \) are the rate constant of adsorption of the pseudo-first-order and pseudo-second-order models, respectively. The values of the rate constant (\(k_1 \) and \(k_2 \)), and \(q_e \) were determined from the linear plots of the graph and the values have been given in Fig. 10 and Table 5.

Based on the results, the correlation coefficient (\(R^2 \)) value is relatively higher for the pseudo-second-order than the pseudo-first-order model which suggests that the adsorption of AB1 onto the AC-ZnO obeyed the pseudo-second-order model. Therefore, the adsorption process involves chemical and electrostatic interaction mechanisms between the dye molecules and the functional groups on the surface of the AC-ZnO [87]. The maximum value of \(q_e \) (92.59 mg/g) calculated from the pseudo-second-order model was close to \(q_m \) which was determined from the Langmuir equation (93.46 mg/g), confirming the system compliance with the pseudo-second-order model. Furthermore, the \(k_2 \) value decreased, as the initial dye concentration increased, which may be due to low competition for adsorption on active sites.

Table 4
Comparison of AB1 adsorption capacity of AC-ZnO with other reported adsorbents

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Adsorption capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignocellulosic waste biomass activated carbon</td>
<td>3.8</td>
<td>[80]</td>
</tr>
<tr>
<td>Fly ash</td>
<td>18.9</td>
<td>[81]</td>
</tr>
<tr>
<td>Cerastoderma lamarcki shell</td>
<td>20.894</td>
<td>[82]</td>
</tr>
<tr>
<td>Brown algae</td>
<td>27.2–29.6</td>
<td>[83]</td>
</tr>
<tr>
<td>Nizamuddin zanardini</td>
<td>29.79</td>
<td>[84]</td>
</tr>
<tr>
<td>Sargassum glaucescens</td>
<td>27.19</td>
<td>[84]</td>
</tr>
<tr>
<td>Sation S. marginatum</td>
<td>29.56</td>
<td>[87]</td>
</tr>
<tr>
<td>Spent bleaching earth modified by CTAB</td>
<td>100</td>
<td>[85]</td>
</tr>
<tr>
<td>AC-ZnO</td>
<td>93.46</td>
<td>This study</td>
</tr>
</tbody>
</table>
sites at lower concentrations, resulting in a faster rate of dye adsorption [88], which was similar to the observations by Fathi et al. [89] and Zhang et al. [90].

3.2.7. Thermodynamic study

The thermodynamic parameters are useful for determining whether the adsorption process is endothermic or exothermic, as well as spontaneous or non-spontaneous. Three thermodynamic parameters including standard enthalpy change (ΔH°), standard Gibbs free energy change (ΔG°) and standard entropy change (ΔS°) were interpreted to study the thermodynamic behavior. The values of ΔH° and ΔS° were calculated using the following equations [91].

$$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$$

where T (K) is the soluble temperature, R (8.314 J/mol K) is the universal gas constant and K_c (L/g) is the equilibrium constant, and q_e and C_e are the equilibrium concentrations of AB1 on AC-ZnO (mg/g) and in the solution (mg/L), respectively. The thermodynamic parameters, ΔH° and ΔS°, are calculated from the slope and intercept of plot logK_c vs. $1/T$, respectively. The values of ΔG° can also be calculated from the following equation:

$$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$$

The thermodynamic parameters of AB1 adsorption on AC-ZnO have been shown in Table 6. According to the results, the positive value for ΔH° indicates that the adsorption process of AB1 was endothermic, which is a strong reason for the strong interaction between AC-ZnO and AB1. Moreover, the negative ΔS° values illustrate a decrease in the irregularity in the reaction as well as a decrease in the efficiency of temperature rise in the solid–liquid phase during the adsorption process. Also, the positive ΔG° obtained for different temperatures reflects the fact that the reaction is non-spontaneous [91].

The findings showed that raising temperature led to an increase in adsorption. This is due to the fact that an increase in temperature may cause better and faster penetration of the adsorbate molecules among the outer layer and the inner pores of the adsorbent particles. Moreover, an increase in temperature promoted the mobility of the dye molecules, thereby increasing the contact of the dye with active sites on the adsorbent, which resulted in an increased dye adsorption rate [92,93].

3.2.8. Regeneration of AC-ZnO

The regeneration of adsorbent is one of the crucial factors for the application of an adsorbent that substantially influences cost and emissions [90]. Here, the reusability of the adsorbent was evaluated by repeated regeneration via washing adsorbent using 0.1 M NaOH solution and deionized water. After the regeneration, the adsorbent was used again to remove the dye. The results have been presented in Fig. 11. As can be seen, under the optimum conditions, the adsorption efficiency for AB1 removal was 92.88% and reached 66.87% after four cycles. The findings revealed that
In this study, worn tire specimens were used as abundant raw material for the production of AC and were modified with the ZnO nanoparticles obtained from the pomegranate peel extract to prepare the AC-ZnO. The characterization of the synthesized adsorbent demonstrated that the AC-ZnO was successfully synthesized. The pH values of dye solution control the adsorption process and the highest efficiency (74.29%) and adsorption capacity (93.46 mg/g) of the AC-ZnO for AB1 was observed at pH 3. The adsorption was well described by the pseudo-second-order model and the equilibrium data were best fitted to the Freundlich isotherm model. The AC-ZnO could be regenerated and reused for several cycles for AB1 dye removal and was also effective in removing dye from actual textile wastewater. The present study showed that the AC-ZnO could be employed effectively as a low-cost and environmentally benign adsorbent for the removal of AB1 dye from colored wastewaters.

3.2.9. Application of AC-ZnO using real samples

Further investigation of the removal of AB1 onto the AC-ZnO was performed by means of the real wastewater samples. The samples were obtained from the Sivan Textile Company in Ardabil. The treatment was subjected to the AC-ZnO under optimized adsorption conditions. It should be noted that the samples contained a large variety of other contaminants which could compete with the target contaminants for the adsorption sites. However, the results showed that the AC-ZnO still had significant efficiency of dye removal (71.21%). This observation suggests that the AC-ZnO has a good potential for the removal of dyes in real samples. Generally, using the AC-ZnO as a low-cost and environmentally friendly adsorbent can be a cost-effective and useful method for AB1 dye removal.

4. Conclusion

In this study, worn tire specimens were used as abundant raw material for the production of AC and were modified with the ZnO nanoparticles obtained from the pomegranate peel extract to prepare the AC-ZnO. The characterization of the synthesized adsorbent demonstrated that the AC-ZnO was successfully synthesized. The pH values of dye solution control the adsorption process and the highest efficiency (74.29%) and adsorption capacity (93.46 mg/g) of the AC-ZnO for AB1 was observed at pH 3. The adsorption was well described by the pseudo-second-order model and the equilibrium data were best fitted to the Freundlich isotherm model. The AC-ZnO could be regenerated and reused for several cycles for AB1 dye removal and was also effective in removing dye from actual textile wastewater. The present study showed that the AC-ZnO could be employed effectively as a low-cost and environmentally benign adsorbent for the removal of AB1 dye from colored wastewaters.

Acknowledgments

The authors would like to express their thanks to the Research Deputy of Ardabil University of Medical Sciences for the administrative supports.

References

