Facile solid-state synthesis of heterojunction CeO$_2$/TiO$_2$ nanocomposite as an efficient photocatalyst for the degradation of organic pollutants

Muhammad Zobayer Bin Mukhlish, Md. Amirul Islam, Md Anisur Rahman, Shafial Hossain, Md. Akhtarul Islam, Md. Tamez Uddin*

Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh, emails: mtuddin_cep@yahoo.com/mtuddin-cep@sust.edu

Received 26 October 2020; Accepted 9 May 2021

ABSTRACT

In this study, CeO$_2$/TiO$_2$ nanocomposites (NCs) were synthesized by adopting a straightforward two steps method comprising, first, the synthesis of CeO$_2$ and TiO$_2$ nanoparticles by wet chemical precipitation method and second, the heterostructure CeO$_2$/TiO$_2$ NCs by solid-state reaction process. The CeO$_2$/TiO$_2$ NCs were characterized by X-ray diffraction, N$_2$ adsorption–desorption isotherm analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis diffuse reflectance spectroscopy. Regardless of CeO$_2$ content, the bandgap energies of CeO$_2$/TiO$_2$ NCs were lower than that of pure TiO$_2$. Photocatalytic activity of the synthesized photocatalysts was assessed by degrading a model dye methylene blue under the illumination of UV light. The CeO$_2$/TiO$_2$ NCs containing 2 wt% CeO$_2$ exhibited higher photocatalytic degradation efficiency compared to reference TiO$_2$ (P25), pure TiO$_2$ and CeO$_2$/TiO$_2$ NCs containing CeO$_2$ other than 2 wt%. The alkaline environment was favorable for photocatalytic decomposition of cationic dye methylene blue (MB). The enhanced degradation efficiency of CeO$_2$/TiO$_2$ NCs was substantiated in terms of vectorial charge separation and the reduction of photogenerated charge carriers owing to the band offsets existing at the interface between CeO$_2$ and TiO$_2$ NPs. Finally, no significant change in the degradation efficiency of CeO$_2$/TiO$_2$ NCs after successive uses evidenced the stability and reusability of the photocatalysts. Therefore, it can be concluded that the synthesized CeO$_2$/TiO$_2$ heterostructure photocatalyst would be a promising candidate for application in wastewater treatment.

Keywords: Solid state synthesis; CeO$_2$/TiO$_2$ nanocomposites; Heterojunction photocatalyst; Degradation efficiency; Band offset

1. Introduction

Safe and clean water is important for human health and pleasure, ecosystems, and also for a booming economy [1]. With the rapid urbanization and industrialization, more and more toxic and harmful pollutants are entering into the water through various channels, which directly or indirectly threaten the harmonious development of the ecological environment and humanity [2]. Organic dyes are considered as one of the major contaminants discharged into the water environment from various industries like textiles, leather, food, pharmaceutical, printing, etc. [3,4]. Dyes tend to suppress photosynthetic activity in aquatic habitats by preventing the penetration of sunlight that affects the aquatic biota [5]. Moreover, azo dyes, which constitute about 60%–70% of the textile dyestuffs, have genotoxic, mutagenic, and carcinogenic effects on living beings [6]. Consequently, the treatment of wastewater containing such ecotoxic dyes is of great interest to ensure the sustainability of the environment for future generations.

The conventional techniques like coagulation, membrane separation, adsorption, and activated sludge process...
are not effective enough to treat organic containing effluent released from different industries as most of these techniques create secondary pollutions [7–12]. In recent decades, advanced oxidation processes (AOPs) have drawn much attention for the treatment of wastewater as these techniques completely degrade the toxic organic matters in the wastewater or convert the organic matters into less harmful products [13–15]. Among AOPs, heterogeneous photocatalysis using semiconductor metal oxides has been proved to be a promising alternative, economical, and harmless technology for complete mineralization of toxic organic pollutants to H2O and CO2 as end products [16–18]. Since the discovery of titanium oxide (TiO2) as a photocatalyst for water splitting [19], it has been extensively used as a photocatalyst for the degradation of pollutants in industrial wastewaters due to its stability, photoactivity, low cost, and non-toxicity to living organisms [20–23]. Nevertheless, the industrial use of TiO2 is constrained due to the rapid recombination of the photogenerated charges [24]. Therefore, the great challenge of the practical application of TiO2 for the degradation of organics is to reduce the recombination of photogenerated charge carriers.

Over the past decades, researchers have adopted different strategies to enhance the photocatalytic activity of TiO2 [25–31]. One of the most effective strategies is to develop heterostructure photocatalysts by coupling TiO2 with either n-type metal oxide semiconductors or p-type metal oxide semiconductors making n–n heterojunction [32] and p–n heterojunction [33,34], respectively. Recently, enhanced photocatalytic activity of various TiO2 based heterostructure photocatalysts, like NiO/TiO2 [33,35], SnO2–TiO2 [36,37], TiO2/ZnO [38], RuO2/TiO2 [39], Fe2O3–TiO2 [40–42], ZrO2/TiO2 [43], and CdS–TiO2 [44], have been studied for the degradation of organic pollutants in water. Cerium oxide (CeO2) is an n-type semiconductor with a moderate bandgap (3.0–3.6 eV) [45]. CeO2 has a fluorite structure and Ce4+ in CeO2 is smaller to stabilize the fluorite structure [46]. Ce can exist as Ce4+ and Ce3+. Some of the Ce4+ is reduced to Ce3+ and is accompanied by the release of oxygen creating oxygen vacancies. Thus, the photocatalytic activity of pure CeO2 is low and cannot be applied to degrade organic pollutants; because the formed oxygen vacancies act as recombination centers of photo-generated charges [47]. However, the coupling of CeO2 with other semiconductors having appropriate band positions can improve the photocatalytic activity of both pristine semiconductors. In coupled semiconductors, the recombination of photogenerated charges is reduced by spatial transfer of charges to the conduction band (CB) and valence band (VB) of two different semiconductors in opposite directions. The direction of charge transfer depends on the positions of CB and VB of the constituent semiconductors. It is reported that CB and VB positions of TiO2 are more positive than those of CeO2 [48–52]. Thus, there exist valence band and conduction band offsets at the interface between CeO2 and TiO2 of heterojunction CeO2/TiO2 nanoparticles that suppress the charge recombination by transferring them in opposite direction leading to the improved activity of CeO2/TiO2 photocatalyst for the degradation of organic pollutants. However, the actual degradation efficiency of the heterostructure CeO2/TiO2 photocatalysts depends on the preparation method and the optimum content of CeO2 [53]. In this context, a number of researchers have attempted to prepare CeO2/TiO2 photocatalysts by different methods like hydrothermal [54,55], sol-gel [53,56,57], and impregnation [58]. The as-prepared heterostructure CeO2/TiO2 photocatalysts exhibited higher degradation efficiencies for organic pollutants under the irradiation of UV and visible light. Different synthetic methods of heterostructure CeO2/TiO2 photocatalysts and their degradation efficiencies for the degradation of different organic dyes are shown in Table S1. However, most of the current methods for the synthesis of heterostructure photocatalyst are primarily based on the solution method, which is rather complicated and apparatus-dependent. The preliminary study in our laboratory showed that the photocatalytic activity of CeO2/TiO2 NC prepared by precipitating CeO2 onto the surface of TiO2 nanoparticles was drastically reduced. This might be due to the formation of CeO2 film on the TiO2 surface which prevented the activation of TiO2 by inhibiting the penetration of light. To avoid such unwanted phenomena, some researchers have synthesized heterostructure nanocomposites by solid-state sintering method [59–62]. It is a simple, easy, and straightforward method to prepare nanocomposites on an industrial scale. To the best of our knowledge, no work has been reported yet on the synthesis of heterostructure CeO2/TiO2 NCs by the solid-state sintering method.

In the present study, heterostructure CeO2/TiO2 NCs containing different amounts of CeO2 were successfully prepared by a straightforward solid-state sintering method. The synthesized NCs were then analyzed with different characterization techniques. The photocatalytic degradation efficiency of synthesized NCs was evaluated by degrading of MB dye under the illumination of UV light. The mechanism of improved photocatalytic performance was attributed to enhanced charge separation owing to band discontinuity at the interface of CeO2/TiO2 NCs.

2. Materials and methods

2.1. Chemicals and reagents

Analytical grade reagents were bought and used as received in order to prepare TiO2, CeO2, CeO2/TiO2 NCs. Titanium(IV) tetrachloride and 25 w% aqueous ammonia were obtained from Merck (Germany). Cerium nitrate hexahydrate was purchased from Sigma Aldrich (Germany). Methylene Blue (MB) (C16H11ClN3S) was collected from Loba Chemie, India. The solutions of the desired pH were obtained by adding a suitable amount of dilute HCl and NaOH solutions.

2.2. Synthesis of nanoparticles

2.2.1. Synthesis of TiO2 NPs

The TiO2 NPs were synthesized by precipitation method using titanium(IV) chloride and aqueous ammonia (25%) solution as precursor and precipitant, respectively. In a typical method, 2 mL titanium(IV) chloride was mixed with 10 mL distilled water and was stirred for 30 min. Subsequently, an aqueous ammonia solution was added to the titanium(IV) chloride solution to form a precipitate.
of titanium hydroxide. The precipitate was then separated from the mother solution by centrifugation and washed with deionized water to obtain chlorine-free solid mass. The possible reaction scheme for the above synthesis could be proposed as:

\[\text{NH}_4\text{Cl} \rightarrow \text{TiCl}_4^{-} + 4\text{OH}^{-} \quad (2) \]

\[\text{TiCl}_4^{-} + 4\text{OH}^{-} \leftrightarrow \text{Ti} (\text{OH})_4^{(aq)} \quad (3) \]

The obtained solid mass of titanium hydroxide were then dried at 110°C for 12 h followed by calcination at 500°C in a muffle furnace in presence of atmospheric oxygen for 2 h to get crystalline TiO2 powder. During calcination in the furnace, the titanium hydroxide is dehydrated to TiO2 by the following chemical transformation:

\[\text{Ti} (\text{OH})_4^{(aq)} \rightarrow \text{TiO}_2^{(s)} + 2\text{H}_2\text{O}^{(s)} \quad (4) \]

The TiO2 so obtained was ground to powder with mortar-pestle and was stored in an air-tight container for further experiment. The TiO2 powder so obtained will be called pure TiO2 from now onward.

2.2.2. Synthesis of CeO2 NPs

The CeO2 nano-powders were synthesized by the precipitation method using cerium(III) nitrate hexahydrate as precursor and ammonia solution (25%) as the precipitant. In the experimental process, 4.342 g cerium(III) nitrate hexahydrate was dissolved in 100 mL deionized water. Dropwise addition of ammonia solution to the above solution under magnetic stirring at room temperature gave precipitate. The suspension was aged over-night with deionized water several times and was separated from the suspension by centrifugation at 5,000 rpm. The so-obtained wet particles were then dried at 110°C overnight and subsequently calcined at 500°C for 2 h to obtain CeO2 crystals. The CeO2 powder was then ground with agate mortar-pestle and stored for further use.

2.2.3. Preparation of CeO2/TiO2 heterostructure nanocomposites

The CeO2/TiO2 heterostructure photocatalysts were prepared by the solid-state sintering method. In a typical method, 0.005 g CeO2 and 0.245 g TiO2 (i.e., CeO2/TiO2 = 2:98) were thoroughly mixed and ground in a mortar for 40 min through the agate mortar and pestle. The ground powder was then calcined at 500°C for 2 h in a furnace. The heat treatment enhanced the chemical binding among the particles and strengthened the mechanical properties of the CeO2/TiO2 NC [63]. The obtained NC was then labeled as 2 wt% CeO2/TiO2 and stored for further use. The CeO2/TiO2 NCs containing other weight percentages of CeO2 were prepared by the same procedure with the corresponding CeO2/TiO2 ratio.

2.3. Characterizations of NPs

The crystallinity of the prepared NPs was investigated using an X-ray diffractometer (model 3040X Pert PRO, Philips). The 2θ data were obtained using a continuous scan mode in the 2θ range of 10°–80°. The mean size of the crystallites was calculated using Scherrer’s formula. Field emission scanning electron microscopy (FESEM; JSM-7600F, JEOL, Japan) equipped with EDS was used to investigate elemental analysis and surface morphology of CeO2/TiO2 NCs. The bandgap energy of the prepared NPs was determined by measuring UV-vis diffuse reflectance spectra (UV-vis DRS) of the NPs at ambient conditions. The UV-vis DRS was recorded by scanning the samples in wavelength ranging from 200 to 800 nm with a UV-vis-NIR spectrometer (LAMDA 750, PerkinElmer, Inc, USA) using sintered PTFE as a standard reference. The nitrogen adsorption-desorption isotherms of the prepared photocatalysts were recorded at -77 K by a porosimetry analyzer (ASAP 2020 Plus, Micromeritics Instrument Corporation, USA). Before executing measurements, the NP samples were degassed at 120°C under ultra-high vacuum for 10 h. The specific areas \(S_{BET} \) were estimated through the Brunauer-Emmett-Teller (BET) equation and the pore size distributions were evaluated from the adsorption courses of the nitrogen adsorption-desorption isotherms by using the Barrett, Joyner, Halenda (BJH) method.

The point of zero charges (pHpzc) of the synthesized NPs was obtained by the pH drift method [64]. At first, eight samples of 200 mL 0.1 M KNO3 solution were prepared as a background electrolyte. The role of background electrolyte KNO3 was to adjust the ionic strength of the solution to a constant value of 0.1 M. The initial pH of the electrolyte solution was adjusted in the range 4–12 with the addition of the suitable amount of 0.1 M HCl or 0.1 M NaOH solution. 100 mg of CeO2/TiO2 NCs was added to 200 mL solutions of different pH and shaken for 24 h. Then the final pH (pHfinal) was measured. The difference between the initial and final pH was plotted as a function of the initial pH, and the pH corresponding to the pHpzc value of zero was considered as the pHpzc of the NC surface.

Complete mineralization of MB dye was tested by determining chemical oxygen demand (COD) of the MB solution after photocatalytic degradation using a photometer (photometer MD 600, Lovibond, Germany) according to the procedure described elsewhere [65].

2.4. Photocatalytic experiment

The photocatalytic activities of the prepared CeO2/TiO2 NCs, pure TiO2, and commercial TiO2 (Degussa, P-25) were investigated by degrading MB under the radiation of a mercury lamp (Model: MBFU 125W E27, OSRAM). The photodegradation tests were conducted by placing a UV lamp horizontally over a 300 mL glass beaker. The reaction cell was maintained at 25°C by circulating water. In the photocatalytic experiment under air atmosphere, 100 mL solution of MB (10 mg/L) at pH 8 containing 0.1 g photocatalyst was stirred in dark for 30 min prior to illumination. 4 mL of...
the suspensions were collected as a sample after a predetermined time interval of light irradiation and the concentration of MB in the supernatant after centrifugation was analyzed by a UV-vis spectrophotometer (UV-1650, SHIMADZU, Japan) measuring absorbance at 664 nm. An experiment in absence of UV light irradiation was also conducted as blank with 2 wt% CeO2/TiO2 catalyst. Another blank experiment without the photocatalyst but with UV irradiation on MB solution was also performed.

3. Results and discussion

3.1. Characterization of NPs

3.1.1. XRD analysis

XRD analysis is performed to examine the crystallinity and the size of the synthesized NPs. The major diffraction lines shown in Fig. 1A at 2θ = 25.29°, 37.85°, 48.05°, 54.05°, 55.14°, and 62.84° are ascribed to the (101), (004), (200), (105), (211), and (204) planes of anatase phase TiO2, respectively (JCPDS card No. 21-1272) [33,66]. No characteristic diffraction peaks of CeO2 are visible in the spectra (a) of Fig. 1A, which is natural as the sample represents pure TiO2. Parallel to that, spectra (b), (c), and (d) of Fig. 1A also do not show any characteristic peak of CeO2 in spite of its availability in NCs. This might owe to the very low concentration (1–3 wt%) of the component in the CeO2/TiO2 NCs. The diffraction lines originating from CeO2 might be exposed if the most intense peak of TiO2 at 2θ = 25.29° is excluded from the XRD spectra. Thus, to diffuse any confusion, the XRD spectra were plotted in the 2θ region ranging from 27 to 70° as presented in Fig. 1B. In the spectra (a) of Fig. 1B (belonging to pure TiO2), again no new peak has appeared that could be attributed to substances other than TiO2. In the spectra (b), (c), and (d) of Fig. 1B (belonging to CeO2/TiO2 NCs), however, besides the diffraction lines corresponding to TiO2, the two additional peaks appeared at 2θ = 28.56° and 33.08° which could be assigned to (111) and (200) planes, respectively, of cubic fluorite CeO2 (JCPDS PDF no. 34-0394) [67,68]. The intensities of these peaks corresponding to CeO2 increased with increasing CeO2 content in CeO2/TiO2 samples. This confirms the presence of CeO2 in the heterostructure CeO2/TiO2 NCs. It was obvious from the XRD patterns that the CeO2/TiO2 NCs has consisted of anatase phase TiO2 and cubic fluorite CeO2 nanoparticles. The characteristic peaks of TiO2 in both the pure TiO2 and the CeO2/TiO2 NCs are identical and they represent anatase crystal phases. No noticeable change in the crystal phase has been observed in TiO2-component by the influence of the CeO2-component in the NC. Promnopas et al. [69] calcined TiO2 films at 450°C and reported having detected an insignificant amount of rutile phase crystals in addition to the predominant anatase crystalline phase [69]. In this work, however, pure TiO2 shows anatase crystalline phase only, and no transition to rutile phase is detected in CeO2/TiO2 NCs (both formed by calcination at 500°C).

The average crystallite sizes of TiO2 in samples estimated from the Scherrer formula by using the (101) plane was found to be 16.97, 18.60, 18.72, and 18.92 nm in pure TiO2, 1 wt% CeO2/TiO2, 2 wt% CeO2/TiO2, and 3 wt% CeO2/TiO2 samples, respectively. The size of TiO2 crystallite increased with increasing CeO2 content. This might be due to the deterioration of crystallinity of anatase phase TiO2 with an increase in CeO2 content in the NCs [68]. A similar trend in increasing crystal size of TiO2 with CeO2 contents was also described elsewhere [57].

3.1.2. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis

The morphology of the CeO2/TiO2 NCs is investigated by FESEM images presented in Fig. 2. The FESEM images in Fig. 2A and B reveal that the TiO2 and CeO2 NPs in CeO2/TiO2 NCs are uniform in size and regular in shape.

Fig. 1. XRD spectra of the synthesized TiO2 and CeO2/TiO2 nanoparticles in the 2θ region of (A) 15–70°, and (B) 27–70°. (a) TiO2, (b) 1 wt% CeO2/TiO2, (c) 2 wt% CeO2/TiO2, and (d) 3 wt% CeO2/TiO2.
The images demonstrate that most of the particles formed are spherical in shape (in nano-level scale) and few of them appear as an aggregate of different shapes and sizes. The average size of the NPs determined from the FESEM image is about 23 nm.

The constituents and composition of the synthesized CeO$_2$/TiO$_2$ sample were examined by energy-dispersive X-ray (EDX) analysis and the results are presented in Fig. 2C and D. As seen in Fig. 2C, the granular distribution is similar to those observed in FESEM images in Fig. 2A and B. The EDX spectrum exhibits the peaks corresponding to Ce, Ti, and O atoms only (Fig. 2C and D). As there are no peaks other than these, it could be concluded that the synthesized sample is highly pure and free of impurities, and is composed of Ce, Ti, and O only. The elemental analysis estimates an atomic ratio of Ce:Ti = 0.35:33.35 = 1:105 in the CeO$_2$/TiO$_2$ NCs, while the theoretical atomic ratio of the same in 2 wt% CeO$_2$/TiO$_2$ is calculated as 1:95. Such deviation of 10%–11% between the theoretical and the experimental values is quite acceptable in EDX analysis, where the oxygen content is not an experimentally determined value, rather an estimated one from the balance of Ti and Ce.

3.1.3. N$_2$ adsorption–desorption study

The nature of the nitrogen adsorption/desorption isotherms of 2 wt% CeO$_2$/TiO$_2$ NC (Fig. 3A) is of type IV with H2 type hysteresis loop (based on IUPAC classification) in the high-pressure region ($P/P_0 > 0.65$), indicating the major contribution of mesopores in the pore-structure [26,70]. The H2 type hysteresis loop is the characteristic of the ink-bottle-shaped pores of the solids consisting of consolidated/unconsolidated agglomerate of spherical particles [71]. The pore size distribution curve shown in Fig. 3B reveals that the major portion of the pores in CeO$_2$/TiO$_2$ NCs is located in the mesoporous region (15–50 nm) with a mean pore diameter of 17.72 nm. A small portion of the pores are located in the microporous region (>50 nm) also, and their contribution to the pore structure increases with an increase in CeO$_2$ content.
The textural properties, namely BET surface area (S_{BET}), total pore volume, and pore diameter of the pure TiO$_2$ and CeO$_2$/TiO$_2$ catalysts are given for comparison in Table 1. As seen in the Table, the S_{BET}-value does not undergo substantial changes up to 2 wt% CeO$_2$ in the NC, beyond which it decreases abruptly. The decrease in the BET surface area could result from the blocking of mesopore dimension when CeO$_2$ particles were deposited. The specific pore volume is the highest in the compositions under investigation. The average pore size increases with the increase of CeO$_2$ in the NCs leveling off at around 2 wt% CeO$_2$.

3.1.4. UV-vis DRS analysis

The optical property like the bandgap of a semiconductor plays an important role in determining its activity as a photocatalyst for the degradation of organic dyes. The UV-vis DRS was employed to inspect the optical property of the synthesized NCs as displayed in Fig. 4A. Fig. 4A demonstrates the absorption edges of pure TiO$_2$ at around 385 nm. Compared to that of the TiO$_2$ sample, the absorption edges of CeO$_2$/TiO$_2$ nanocomposites were observed to be red-shifted slightly toward a higher wavelength (inset of Fig. 4A) indicating the absorption of light more efficiently by the heterostructure CeO$_2$/TiO$_2$ NCs [72]. The Kubelka–Munk theory was used for the analysis of the diffuse reflectance spectra as given by Eq. (5) [73]:

$$F(R) = \frac{\alpha S}{2} = \left(1 - R\right)^2$$ \hspace{1cm} (5)

where $F(R)$ is the Kubelka–Munk function, R is the reflectance, α is the absorption coefficient and s is the scattering factor. The bandgap energy (E_g) of semiconductors with indirect bandgap is generally determined by Eq. (6) [74]:

$$\alpha h\nu = A (h\nu - E_g)^2$$ \hspace{1cm} (6)

where ν and A are the light frequency and a constant, respectively. Since the scattering factor is almost wavelength-independent in some $h\nu$-range, $F(R)$ is proportional to α [75], and in this $h\nu$-range, Eq. (6) can be transformed into:

$$\left(F(R)h\nu\right)^{1/2} = B (h\nu - E_g)$$ \hspace{1cm} (7)

where B is a constant.

For determining the optical band gap energy, E_g, a $[F(R)h\nu]^{1/2}$ vs. $h\nu$ the plot is drawn, which is an S-shaped curve. This curve contains an approximately linear section in a given $h\nu$-interval. This linear section is extrapolated to intersect the $h\nu$-axis at $h\nu = E_g$.

The calculated E_g for TiO$_2$ is found to be 3.22 eV which is in good agreement with the values described elsewhere [26,76,77]. The analysis reveals lower E_g of CeO$_2$/TiO$_2$ NCs compared to the pure TiO$_2$. The E_g for 1 wt% CeO$_2$/TiO$_2$, 2 wt% CeO$_2$/TiO$_2$, and 3 wt% CeO$_2$/TiO$_2$ have been found to be 3.14, 3.13, and 3.11 eV, respectively.

3.2. Photocatalytic degradation performance of CeO$_2$/TiO$_2$ NCs

The photocatalytic performance of the CeO$_2$/TiO$_2$ NCs is evaluated by degrading MB dye under UV light irradiation. For sake of comparison, the photocatalytic degradation of MB is monitored on the prepared anatase TiO$_2$ and commercial P25 as references. In addition, the photocatalytic degradation of MB under only UV light irradiation and without using photocatalyst is also investigated as a blank experiment in order to justify the degradation performance of CeO$_2$/TiO$_2$ NCs. The adsorption of MB onto CeO$_2$/TiO$_2$ NCs without light irradiation is also investigated as a blank experiment. The preliminary study shown in Fig. S1A and B demonstrate that when the solution is irradiated with UV light, the color of MB dye solution containing dispersed CeO$_2$/TiO$_2$ NCs gradually diminishes with time manifesting the breakdown of the chromophoric structure of the dye. The photocatalytic degradation kinetics
of different photocatalysts is presented in Fig. 5A in form of $\frac{C}{C_0}$ vs. t plot and Fig. 5B in form of $\ln\left(\frac{C}{C_0}\right)$ vs. t plot, where C is the concentration of MB at any time, t, and C_0 is its initial concentration.

Fig. 5 shows that in absence of photocatalysts, MB is not degraded at all under only UV light irradiation; or in the presence of photocatalyst without UV light irradiation. The 1 wt% CeO$_2$/TiO$_2$ and 2 wt% CeO$_2$/TiO$_2$ NCs show higher degradation efficiency compared to pure TiO$_2$ and commercial P-25, and the 2 wt% CeO$_2$/TiO$_2$ NC exhibit the highest photodegradation performance among all the photocatalysts tested in the present study. After 20 min of photocatalytic reaction, the degree of degradation defined as $(1 - \frac{C}{C_0})$ of 1 wt% CeO$_2$/TiO$_2$, 2 wt% CeO$_2$/TiO$_2$, 3 wt% CeO$_2$/TiO$_2$, pure TiO$_2$, and P-25 for the degradation of MB are about 88%, 96%, 78%, 85%, and 87%, respectively. For 3 wt% CeO$_2$/TiO$_2$ NC, the excess CeO$_2$ might form a layer on the active surface of TiO$_2$ which hinders the photocatalytic activation of TiO$_2$ with UV light and reduce its photocatalytic degradation efficiency, and thus, 3 wt% CeO$_2$/TiO$_2$ NC shows poorer degradation capacity than 1 and 2 wt% CeO$_2$/TiO$_2$ samples [57].

It is well-known that the photodegradation reactions follow a Langmuir–Hinshelwood first-order kinetics model [84], as described by Eq. (8):

$$\ln\left(\frac{C}{C_0}\right) = -kt$$

where k is the reaction rate constant. If $\ln\left(\frac{C}{C_0}\right)$ is plotted against t, a straight line will be obtained, the slope of which is equal to the reaction rate constant, k. The experimental values of $\ln\left(\frac{C}{C_0}\right)$ are plotted against time, t (shown in Fig. 5B). From Fig. 5B, it is obvious that the 2 wt% CeO$_2$/TiO$_2$ NC exhibits the highest degradation efficiency with a degradation rate constant of 0.139 min$^{-1}$, which is about 1.54 and 3.23 times higher than those obtained with the pure TiO$_2$ and commercial P25, respectively. Vieira et al. [83] prepared CeO$_2$/TiO$_2$ photocatalyst by hydrothermal method for the degradation of MB under UV light irradiation and found a specific first-order rate constant of 0.04875 min$^{-1}$ by CeO$_2$/TiO$_2$ containing 0.29 mol% Ce. A comparison of the first-order rate constant for the degradation of MB with different photocatalysts are presented in Table 2. From Table 2, it is obvious that the rate of degradation of MB with the prepared CeO$_2$/TiO$_2$ NC is very high. Therefore, the prepared CeO$_2$/TiO$_2$ NC is a promising photocatalyst for the degradation of toxic organics for environmental remediation.

Degradation efficiency largely depends on the adsorption of dye on the surface of photocatalysts as the dye molecules must be in contact with the photocatalyst to be degraded. The dye adsorption in turn depends on the solution pH. Fig. 6A exhibits the effect of pH on the photocatalytic degradation efficiency of 2 wt% CeO$_2$/TiO$_2$ NCs for the degradation of MB. As seen in Fig. 6A, the degradation efficiency is favorable in the basic medium and greatly collapses in the acidic medium. The pH dependence of the degradation efficiency could be explained with reference to the point of zero charge (pH$_{pzc}$) of 2 wt% CeO$_2$/TiO$_2$ NC.

Table 1
Nitrogen sorption porosimetry studies of TiO$_2$ and CeO$_2$/TiO$_2$ nanomaterials

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>S_{BET} (m2/g)</th>
<th>Pore volume (cm3/g)</th>
<th>Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>55.60</td>
<td>0.25 ± 0.01</td>
<td>17.73</td>
</tr>
<tr>
<td>1% CeO$_2$/TiO$_2$</td>
<td>55.15</td>
<td>0.24 ± 0.01</td>
<td>22.01</td>
</tr>
<tr>
<td>2% CeO$_2$/TiO$_2$</td>
<td>56.09</td>
<td>0.32 ± 0.01</td>
<td>23.20</td>
</tr>
<tr>
<td>3% CeO$_2$/TiO$_2$</td>
<td>49.52</td>
<td>0.28 ± 0.01</td>
<td>23.10</td>
</tr>
</tbody>
</table>

Surface areas were determined by BET, pore diameters by BJH theory (applied to the adsorption branch), and pore volumes by single-point analysis.
which is determined to be 7.60 (Fig. S2A). At pH greater than 7.60, the surface of the photocatalyst becomes negatively charged and that favors the adsorption of cationic dye MB leading to an increase in degradation efficiency. However, degradation efficiency drastically decreases at pH 12. It is speculated that at pH 12, the catalyst surface assumes very high negative potential, and a thin film of MB dye may form on the catalyst surface because of the strong electrostatic force between the high negatively charged surface and cationic dye MB. This thin film inhibits the light penetration to the catalyst surface and thus hinders the activation of the catalyst. In contrast, at lower pH, the adsorption of MB dye decreases due to the repulsion force between positively charged metal oxide NCs and the cationic dye MB and that results in a severe decrease in degradation efficiency. A similar trend is also reported in the literature [78,79].

The degradation efficiency also depends on the dose of the photocatalysts. The percentage degradation of MB after 20 min of UV light irradiation at different doses of 2 wt% CeO₂/TiO₂ NCs is presented in Fig. S2B. As shown in Fig. S2B, the percentage degradation of MB increases from 71% to 97% when the photocatalyst dose is increased from 0.5 to 1.5 g/L. Further increase in catalyst dose results in a decrease in the degradation percentage. As 96% degradation of dye is achieved at a dose of 1 g/L, it is considered as the optimum dose in this study. The improved degradation efficiency is attributed to the formation of more hydroxyl radicals resulting from the more active sites on the surface of NCs with increasing doses of catalysts. On the other hand, a high dose of photocatalyst beyond a certain limit increases the opacity of the solution and hinders the light penetration by scattering the light, and that leads to a decrease in degradation efficiency [85,86]. The loss in surface area by agglomeration (particle–particle interactions) at high solid concentration also decreased the degradation efficiency [86]. In addition, the photocatalyst is reused several times to confirm the stability in repeated uses. No significant loss in degradation efficiency is observed in three successive use of 2 wt% CeO₂/TiO₂ NCs, which evidences the stability and reusability of the prepared photocatalysts (Fig. 6B). The degradation efficiencies of 2 wt%
CeO2/TiO2 NCs after 40 min irradiation for three successive uses are found to be 98.15%, 97.06%, and 95%, respectively.

3.3.1. Photocatalytic degradation mechanism

The enhanced degradation efficiency of heterostructure CeO2/TiO2 NCs can be rationalized by band alignment at the interface between CeO2 and TiO2 nanoparticles. The conduction band (CB) and the valence band (VB) offsets existing at the interface spatially transfer photogenerated electron-holes in opposite direction, and thus reduce the charge recombination and consequently, increase the degradation efficiency. In this context, the positions of CB and VB edges of the constituent semiconductors determine the direction of the transfer of photogenerated electrons and holes. The position of CB and VB edges of CeO2 and TiO2 can be determined by the following Mulliken electronegativity equation [88]:

\[E_{CB} = \chi - E_e - 0.5E_g \]

(9)

\[E_{VB} = \chi - E_e + 0.5E_g \]

(10)

where \(\chi \), \(E_e \), \(E_{CB} \), and \(E_{VB} \) are the electronegativity, the valence band edge potential, conduction band edge potential, and the bandgap energy of the semiconductor, respectively. \(E_e \) denotes the free electron energy on the hydrogen scale (4.5 eV). The value of \(\chi \) for a particular semiconductor can be obtained from the geometric means of the electronegativities of the constituent atoms in the semiconductor. The arithmetic mean of electron affinity and ionization potential of an element gives the electronegativity of the element. The electron affinity and ionization potential of oxygen, cerium, and titanium are reported as 1.46, 0.95, and 0.08 eV and 13.6, 5.47, and 6.8 eV, respectively [89,90]. Thus, the values of \(\chi \) for CeO2 and TiO2 are estimated to be 5.56 and 5.79 eV, respectively. The calculated band gap energy of TiO2 is 3.25 eV. The bandgap energy of CeO2 is reported to be 3.00 eV [91,92]. The estimated values of \(E_{CB} \) and \(E_{VB} \) for TiO2 were found to be 0.34 and 2.91 eV, respectively. On the other hand, \(E_{CB} \) and \(E_{VB} \) for CeO2 are calculated to be –0.44 and 2.56 eV, respectively. Thus, both the conduction band edge and valence band edge of CeO2 are more negative than those of TiO2. Based on the calculated band edge position, the band alignment of the CeO2/TiO2 NCs was schematically represented in Fig. 7. It is obvious from Fig. 7 that there exist both valence band and conduction band offsets at the interface of CeO2 and TiO2 nanoparticles in CeO2/TiO2 NCs. When the CeO2/TiO2 NCs are illuminated with UV light, the electrons in valence bands of both the semiconductor oxides are excited to jump to the conduction bands with the concurrent generation of the equal number of holes in valence bands. As the CB edge and VB edge of CeO2 are more negative than the corresponding edges of TiO2, the electrons in the CB of CeO2 are injected into that of TiO2 and at the same time holes in the VB of TiO2 are inserted into the VB of CeO2. This process of transferring photogenerated electrons and holes is illustrated in Fig. 7. Thus, photogenerated electrons and holes are transferred in opposite directions in the two semiconductors. Thus, photogenerated electrons and holes are efficiently separated due to their vector transfer to TiO2 and CeO2, respectively, providing a high propensity of charge carriers with suitably long lifetimes to participate in the redox reaction and hence reducing the recombination of photogenerated charge carriers. The enhanced photocatalytic degradation efficiency has attributed the reduction of charge carrier recombination of the CeO2/TiO2 NC system compared to their individual contribution.

The photocatalytic decomposition of MB can be explained by the following reactions:

\[\text{CeO}_2 / \text{TiO}_2 + \text{hv} \rightarrow e^- (\text{TiO}_2) + h^+ (\text{CeO}_2) \]

(11)
The holes in the VB of CeO$_2$ react with the hydroxyl groups (or H$_2$O) on the surface of CeO$_2$ to produce the hydroxyl radical species (OH$^-$) \[78\]. In contrast, electrons in the CB of TiO$_2$ migrate to the active sites on the surface of TiO$_2$ and react with adsorbed O$_2$ to generate superoxide radicals anion (O$_2^-$) which in turn react with water (H$_2$O) to produce hydroxyl radicals (OH$^-$) \[65\]. The OH$^-$ is a strong oxidizing agent which completely mineralizes organic compounds (herein MB dye) to the final degradation products CO$_2$ and H$_2$O \[26,65\].

The degradation products, CO$_2$ and H$_2$O, are confirmed by COD analysis. As a result of the photocatalytic degradation, the chromophore groups of organic compounds may break down producing low molecular weight colorless organic products. The low molecular weight colorless compounds are examined by COD analysis. If the degradation products are colorless organic compounds there would be no significant change in the COD value after photocatalytic degradation. The result of the COD analysis is presented in Fig. 8. As seen in Fig. 8, the COD value of the MB solution before degradation was about 33 mg/L. On the other hand, no measurable COD value of the

Fig. 7. Band alignment and the probable charge transfer mechanism of heterostructure CeO$_2$/TiO$_2$ NCs.

Fig. 8. COD values of MB before and after photocatalytic degradation with CeO$_2$/TiO$_2$ NCs.
sample is observed after photocatalytic degradation asserting that the MB is completely mineralized to CO₂ and H₂O.

4. Conclusion

Mesoporous heterostructure CeO₂/TiO₂ NCs are successfully synthesized via a simple solid-state reaction method at 500°C, and used as heterogeneous photocatalysts for the decomposition of methylene blue (MB) dye from aqueous solution under UV light irradiation. The CeO₂/TiO₂ NCs containing 2 wt% CeO₂ exhibit the highest MB degradation efficiency compared to pure TiO₂ and reference TiO₂ (P25). The band offsets at the interface of CeO₂ and TiO₂ NPs reduce the photogenerated charge recombination resulting in enhanced degradation efficiency of CeO₂/TiO₂ NCs. The basic media is favorable for the degradation of MB with CeO₂/TiO₂ NCs. In addition, repeated use of CeO₂/TiO₂ NCs does not show an appreciable reduction of the photocatalytic degradation efficiency certifying the stability and reusability of the photocatalysts. Therefore, the heterostructure CeO₂/TiO₂ NCs exhibit outstanding properties for the photocatalytic remediation of effluent-containing organic pollutants.

Compliance with ethical standards

Conflict of interest: The corresponding author declares on behalf of all authors that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was financially supported by the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh (Grant No. EAS435).

References

Supporting information

Fig. S2A depicted the results of the pH at the point of zero charge (pHpzc) estimation by the pH drift method. As shown in the Fig. S2, the ΔpH value was zero at the initial pH 7.60. Therefore, the pH at the point of zero charge (pHpzc) of 2 wt% CeO₂/TiO₂ nanocomposite was 7.60.

Fig. S1. Decrease in (A) absorbance and (B) color of MB solution with time under UV light irradiation.

Fig. S2. (A) Determination of pHpzc of 2 wt% CeO₂/TiO₂ nanoparticles by the pH drift method and (B) effect of catalyst (2 wt% CeO₂/TiO₂ NCs) doses on the photodegradation of MB.

Table S1
Different methods for the synthesis CeO₂/TiO₂ NCs and their photocatalytic degradation efficiency for the degradation of different dyes

<table>
<thead>
<tr>
<th>Synthetic method</th>
<th>Target dye</th>
<th>Catalyst loading</th>
<th>Time (min)</th>
<th>Light source</th>
<th>Degradation (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrothermal</td>
<td>Rhodamine B</td>
<td>1 g/L</td>
<td>60</td>
<td>Vis</td>
<td>45</td>
<td>[1]</td>
</tr>
<tr>
<td>Hydrothermal</td>
<td>Rhodamine B</td>
<td>–</td>
<td>70</td>
<td>UV</td>
<td>90</td>
<td>[2]</td>
</tr>
<tr>
<td>Sol-gel</td>
<td>Reactive Red 195</td>
<td>0.08 g/L</td>
<td>120</td>
<td>UV</td>
<td>70</td>
<td>[3]</td>
</tr>
<tr>
<td>Sol-gel</td>
<td>Methyl orange</td>
<td>1 g/L</td>
<td>60</td>
<td>UV</td>
<td>98</td>
<td>[4]</td>
</tr>
<tr>
<td>Sol-gel</td>
<td>Methyl orange</td>
<td>1 g/L</td>
<td>90</td>
<td>UV</td>
<td>95</td>
<td>[5]</td>
</tr>
<tr>
<td>Impregnation</td>
<td>Methyl orange</td>
<td>0.1 g/L</td>
<td>105</td>
<td>UV</td>
<td>82</td>
<td>[6]</td>
</tr>
<tr>
<td>Hydrothermal</td>
<td>Methylene blue</td>
<td>0.5 g/L</td>
<td>160</td>
<td>UV</td>
<td>90</td>
<td>[7]</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Methyl orange</td>
<td>0.1 g/L</td>
<td>25</td>
<td>UV</td>
<td>95</td>
<td>[8]</td>
</tr>
</tbody>
</table>
References

