Swelling properties and basic dye adsorption studies of polyacrylamide hydrogel

Imane Lebkiri a,*, Brahim Abbou a, Lamya Kadiri a, Abdelkarim Ouass a, Abdelhay Elamri a, Hanae Ouaddari b, Omar Elkhattabi a, Ahmed Lebkiri a, El Houssein Rifi a

aLaboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco, emails: imane.lebkiri@gmail.com (I. Lebkiri), abbou.brahim@gmail.com (B. Abbou), kadiri.lamya@gmail.com (L. Kadiri), karim.ouass.smp@gmail.com (A. Ouass), elamri.abdelhay@gmail.com (A. Elamri), omarkhatt@gmail.com (O. Elkhattabi), lebkiriahn@yahoo.fr (A. Lebkiri), elhosseinr@yahoo.fr (E.H. Rifi)
bLaboratory of Materials Membranes and Environment, Department of Chemistry, Faculty of Sciences and Technologies of Mohammedia, University of Hassan II, Casablanca, Morocco, email: ouaddarihanae@gmail.com

Received 14 February 2021; Accepted 16 June 2021

ABSTRACT

This study regrouped the swelling of polyacrylamide (PAAM) hydrogel and the use of this hydrogel in the removal of Safranine (SF) basic dye from an aqueous solution. The swelling experiments results show that the swell ratio of this hydrogel depends on several parameters: the presence of salts, the temperature, and the pH of the medium. Indeed, in the presence of distilled water only the polymer is capable of retaining its macromolecular chains more than 100 times its weight in water. On the other hand, the adsorption process of SF dye by PAAM polymer was investigated using independent variables namely initial pH, dye ion concentration, temperature, and adsorbent dosage. SF adsorption capacity of PAAM hydrogel is found to be 620 mg/g and the equilibrium is obtained after 3 h. The adsorption process could be well described by the Langmuir isotherm and pseudo-first-order model in both linear and non-linear regressions. The adsorption was analyzed thermodynamically and the results revealed that the adsorption process was spontaneous and endothermic.

Keywords: Polyacrylamide; Swelling; Hydrogel; Adsorption; Safranine; Basic dye

1. Introduction

Great interest has been growing in the synthesis and various applications of superabsorbent hydrogels [1,2]. Hydrogels, a novel functional polymer material with a three-dimensional network structure, are moderately cross-linked hydrophilic network polymers that can quickly swell in water and conserve it to a certain degree in comparison with general similar materials like cloth, cotton and cellu-lose fiber, and so forth [3]. Polymeric hydrogels have also generated great interest because of their sensitivity to environmental stimuli such as temperature, pH, pressure, and ionic strength [4,5]. So far, they were extensively used in a variety of application areas such as separation membranes, biosensors, artificial muscles, superabsorbents, such as hygienic products, as well as waste-water treatment and drug delivery devices in virtue of their low cost, abundant resources, and biodegradability [6,7].

Recently, the continuous growth of the world’s water population has gained much attention and dyes are major
water pollutants [8]. Dyes are widely used in the textile, leather, paper, pharmaceutical, plastic, and food industries. The extensive use of dyes often causes pollution problems and endangers the equilibrium of the natural ecosystem when they are discarded into wastewater [9,10]. The genotoxic and mutagenic agents of dyes are more problematic because they can cause heritable disorders that may pass to future generations [11]. Therefore, it is necessary to monitor the environment for quality assurance [12].

Many processes such as biological treatment, coagulation, flotation, electrochemical techniques, adsorption, and oxidation are used to remove dyes from wastewater [13,14]. Adsorption has been the most preferred technique for dye wastewater treatment in terms of cost, simplicity of design, ease of operation, and insensitivity to toxic substances [15,16]. Polymeric hydrogels such as polyacrylamide gel have been the focus of research for environmental scientists due to their characteristic properties, namely adsorption-regeneration, economic feasibility, and environmentally friendly behavior [17,18].

Polyacrylamide hydrogel is a functionalized polymer containing a large number of amide groups which grant a great selectivity for the elimination of several organic pollutants and minerals [19]. Due to its low cost, recoverability, biodegradability, high-adsorption capacity, and its use without any modification, PAAM can be a great adsorbent for dye removal from wastewater [20,21]. Moreover, one of the important advantages of using this polymer is its structure containing abundant active sites which makes it capable of fixing dyes species. Also, the shape and the mechanical rigidity of the adsorbent promote the separation procedure at the end of the adsorption experience.

According to our knowledge, there is no report in the literature about the use of polyacrylamide hydrogel in the adsorption of Safranine (SF) dye. There are only a few studies that have reported the use of this hydrogel in dyes removals, such as the removal of methyl violet from aqueous solution by polyacrylamide by Rahchamani et al. [22], the removal of anionic dyes (reactive orange-20 and direct red-31) from aqueous solutions using polyacrylamide by Didehban et al. [23] and application of polyacrylamide for methylene blue removal from aqueous solutions by Mousavi et al. [24].

1.1. Aims and objectives

This present study aims to investigate the swelling of PAAM hydrogel in a solution with varied ionic strength, pH, and temperature. We further studied the adsorption abilities, kinetics, and isotherms of SF basic dye by the polyacrylamide polymer from aqueous solutions.

2. Experimental section

2.1. Studied materials

The material used in this work is polyacrylamide (PAAM) whose chemical formula is ([(C\(_2\)H\(_3\)CONH\(_2\)]\(_\text{2.1}\)). Studied materials 2. Experimental section polyacrylamide polymer from aqueous solutions.

Polyacrylamide hydrogel in a solution with varied ionic strength, pH, and temperature. We further studied the adsorption abilities, kinetics, and isotherms of SF basic dye by the polyacrylamide polymer from aqueous solutions by Mousavi et al. [24].

According to our knowledge, there is no report in the literature about the use of polyacrylamide hydrogel in the adsorption of Safranine (SF) dye. There are only a few studies that have reported the use of this hydrogel in dyes removals, such as the removal of methyl violet from aqueous solution by polyacrylamide by Rahchamani et al. [22], the removal of anionic dyes (reactive orange-20 and direct red-31) from aqueous solutions using polyacrylamide by Didehban et al. [23] and application of polyacrylamide for methylene blue removal from aqueous solutions by Mousavi et al. [24].

2.1. Aims and objectives

This present study aims to investigate the swelling of PAAM hydrogel in a solution with varied ionic strength, pH, and temperature. We further studied the adsorption abilities, kinetics, and isotherms of SF basic dye by the polyacrylamide polymer from aqueous solutions.

2. Experimental section

2.1. Studied materials

The material used in this work is polyacrylamide (PAAM) whose chemical formula is ([(C\(_2\)H\(_3\)CONH\(_2\)]\(_\text{2.1}\)), whose chemical formula is ([(C\(_2\)H\(_3\)CONH\(_2\)]\(_\text{2.1}\)) (Table 1). It is a superabsorbent that has the form of transparent beads of non-porous surface aspect supplied by Sigma-Aldrich (Saint Louis, USA) (CAS number: 9003-05-8, purity: 99.99%, MW: 150,000).

The dye used in this work is SF, a cationic dye supplied by SOLVACHIM (Casablanca, Morocco). Its chemical formula is C\(_{20}\)H\(_{19}\)N\(_4\)-Cl (M.W. = 350.84 g mol\(^{-1}\), \(\lambda_{\text{max}} = 519\) nm, purity: 85%), and its structure is given in Table 1. SF stock solution with an initial concentration of 1,000 mg L\(^{-1}\) was prepared by dissolving the required amount in double-distilled water. The test solutions were prepared by diluting the stock solution to the desired concentrations.

Other reagents like hydroxide sodium (≥97.0%), sodium nitrate (99%), potassium chloride (99%), sodium chloride (99%), and hydrochloric acid (37%) are supplied by Sigma-Aldrich (Saint Louis, USA).

2.2. Measurement of the swelling rate

A dry amount of PAAM polymer (\(m\)) was immersed in a given volume of distilled water at 25°C with stirring. When the maximum swelling rate is reached the resulting gel has been weighed (\(m_s\)). The swelling rate (Sr) is determined using the following equation:

\[
Sr = \frac{m_s}{m} \times 100
\]

(1)

The water absorbed by PAAM hydrogels is quantitatively represented by the equilibrium water content (EWC):

\[
\text{EWC} = \frac{m_s - m_i}{m_i} \times 100
\]

(2)

2.3. Adsorption experiments

The adsorption experiments were carried out in a static regime in a stirred reactor at a fixed temperature (25°C ± 2°C). The quantities of dye adsorbed and the dye removal efficiency were calculated from the concentrations of the solutions, before and after adsorption according to the following equations [25,26]:

\[
Q = \frac{C_i - C_f}{m} \times V
\]

(3)

\[
R\% = \left(\frac{C_i - C_f}{C_i} \right) \times 100
\]

(4)
where \(Q \) is the adsorbed capacity of PAAM at equilibrium (mg/g), \(R \) is the dye removal efficiency (%), \(C_0 \) and \(C_e \) are, respectively, the initial and the equilibrium dye concentration (mg/L), \(m \) is the mass of adsorbent (g) and \(V \) is the volume of the dye solution (mL).

The SF dye content analyzes were carried out at room temperature using a UV-Visible spectrophotometer (Perkin Elmer Lambda 35).

All tests were repeated three times and the average values were used. For quality assurance/quality control (QA/QC), SF concentrations in all tests were measured separately and the error percentage was less than 3%.

2.3.1. Method validation

The analytical method developed herein was validated by determining its linearity, limit of detection and quantification (LOD, LOQ). Linearity was studied based on the external standard method and the concentrations of cationic dye were 1, 2, 4, 6, 8, 10 mg/L. The best fit standard curve was prepared by linear regression and the correlation coefficient obtained was more than 0.999 (Table 2).

The LOD, LOQ values were intended using standard equations [27]:

\[
\text{LOD} = 3 \frac{S}{m} \quad \text{and} \quad \text{LOQ} = 10 \frac{S}{m} \tag{5}
\]

where \(S \) is the standard deviation of slope and \(m \) is the slope of calibration curve.

The LOD, LOQ values were calculated as 0.035 and 0.0106 mg/L, respectively (Table 2). According to the current results with good sensitivity and lower detection limit suggests that the method is better compared to other methods reported.

2.4. Model to experimental data

- Adsorption kinetics analysis was calculated using [28,29]:

The pseudo-second-order rate equation as:

 \[
 \frac{dQ}{dt} = K_f (Q_e - Q) \Rightarrow t = \frac{1}{K_f Q_e^2} + \frac{1}{Q} t \tag{6}
 \]

 The pseudo-first-order rate equation as:

 \[
 \frac{dQ}{dt} = K_1 (Q_e - Q) \Rightarrow \ln(Q_e - Q) = \ln Q_e - K_1 t \tag{7}
 \]

 where \(K_1 \) is the pseudo-first-order rate constant (g/mg min); \(K_f \) is the pseudo-second-order rate constant (g/mg min), \(Q_e \) and \(Q \) are the metal uptake (mg/g) at equilibrium and at time \(t \), respectively.

- The Freundlich and Langmuir sorption isotherm equations are given respectively below [30,31]:

 \[
 Q_e = K_f C_e^1/n \Leftrightarrow \log(Q_e) = \log(K_f) + \frac{1}{n} \log(C_e) \tag{8}
 \]

 \[
 Q_e = \frac{K_i C_e}{1 + K_i C_e} \Leftrightarrow \frac{C_e}{Q_e} = \frac{1}{K_i Q_m} + \frac{C_e}{Q_m} \tag{9}
 \]

 where \(K_f \) is the Freundlich isotherm constant (mg/g), \(n \) is the adsorption intensity, \(C_e \) is the equilibrium concentration of adsorbate (mg/L); \(Q_e \) is the adsorption capacity at equilibrium (mg/g), \(Q_m \) is the maximum monolayer coverage capacity (mg/g) and \(K_i \) is the Langmuir isotherm constant (L/mg).

 The separation factor \((R_L) \) was used to determine whether the adsorption was favorable or not. The \(R_L \) was calculated from the following equation [32]:

 \[
 R_L = \frac{1}{1 + K_i C_0} \tag{10}
 \]

 where \(C_0 \) represents the initial concentration of adsorbate (mg/L).

- For the thermodynamic studies, the Eyring equation was used [33]:

 \[
 \ln K = \left(\frac{\Delta S}{R} \right) - \left(\frac{\Delta H}{RT} \right) \tag{11}
 \]

 where \(K \) is the sorption distribution constant \((K = Q_e/C_e) \), \(R \) is the ideal gas constant \((8,314 \, \text{J mol}^{-1} \, \text{K}^{-1})\) and \(T \) is the temperature (K), \(\Delta G \) is the Gibbs free energy \((\text{J/mol})\), \(\Delta S \) is the entropy \((\text{J/k mol})\) and \(\Delta H \) is the enthalpy \((\text{J/mol})\).

2.5. Error function analysis

In order to evaluate the suitability of a model equation to experimental results, an error function assessment is usually required [34,35]:

- Coefficient of determination \((R^2) \): Its value varies from 0 to 1 and is given as in Eq. (10). It provides the best fitting when its value is closest to unity:

 \[
 R^2 = 1 - \frac{\sum(Q_{e,exp} - Q_{e,calc})^2}{\sum(Q_{e,exp} - Q_{e,mean})^2} \tag{12}
 \]

 - The chi-square \((\chi^2) \): A high \(\chi^2 \)-value indicates a high bias between the experimental and the calculated model values.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration curve, LOD, and LOQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regression equation</th>
<th>Standard deviation</th>
<th>(R^2)</th>
<th>LOD</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 12.948 x - 0.8318)</td>
<td>0.07934</td>
<td>0.9996</td>
<td>0.03521768</td>
<td>0.10602326</td>
</tr>
</tbody>
</table>
\[\chi^2 = \sum \frac{(Q_{\text{exp}} - Q_{\text{calc}})^2}{Q_{\text{calc}}} \]

(13)

- The sum of error squares (SSE): The lower the value, the better the curve fits the experimental values. It is mathematically expressed in Eq. (12).

\[SSE = \sum (Q_{\text{calc}} - Q_{\text{exp}})^2 \]

(14)

- The standard error (SE):

\[SE = \sqrt{\frac{SSE}{N}} \]

(15)

with \(N \) is the degrees of freedom.

In addition to the previously mentioned error equations, another statistical test, namely \(F \)-test, is examined for their suitability to be the appropriate function to predict the best-fitting isotherm model.

3. Experimental results and discussion

3.1. Characterization of PAAM

3.1.1. Fourier-transform infrared spectroscopy of PAAM

IR spectrometry makes it possible to interpret the spectra obtained by detecting the functional groups of the molecule. The infrared spectra (400–4,000 cm\(^{-1}\)) of PAAM are shown in Fig. 1a. The spectrum shows two peaks at 3,465.44 and 3,405 cm\(^{-1}\) due to the valence vibration of the amino group N–H stretching (primary amine) and the hydroxyl group (OH) [36–38]. The absorption peak at 2,923 cm\(^{-1}\) could be attributed to the C–H elongation vibration of the CH\(_2\) group. The adsorption peak at 1,639 cm\(^{-1}\) confirms the presence of the carbonyl group C=O and that at 1382 cm\(^{-1}\) corresponds to the valence vibration of C–N, whereas that at 998 cm\(^{-1}\) and 622 cm\(^{-1}\) corresponds to the valence vibration of NH\(_2\) [39–41].

3.1.2. X-ray diffraction

X-ray diffraction makes it possible to determine the structure of the polymer studied. Fig. 1b shows the X-ray diffraction pattern of the polymer in powder form. The absence of peaks in the spectrum of this figure shows that the polymer studied is an amorphous product [42].

3.1.3. Point of zero charge

The PZC was determined by a simple electrochemical method, by adding 0.013 g of PAAM in a series of beakers containing 50 mL of NaCl (0.01 M), the pH\(_i\) (initial pH) of each beaker was adjusted to precise values from 2 to 12 then 0.013 g [43]. The suspensions were kept under constant stirring at room temperature for 24 h. At the end of the experiment, the final pH (pH\(_f\)) values of the suspensions were recorded. The value of PZC is the intersection of the curve (\(\Delta$$pH$$ (pH\(_i\)-pH\(_f\)) vs. pH\(_i\)) with the abscissa axis (Fig. 1c). The PZC of PAAM is equal to 8.1. For pH > PZC, the surface of the support is negatively charged while for pH less than 8.1 the surface is positively charged.

3.2. Swelling of PAAM in distilled water

A mass equal to 13 mg of PAAM was placed in a beaker containing 100 mL of distilled water. The gel obtained was weighed at regular time intervals to determine the rate of gel swelling. Fig. 2a shows the evolution of the rate of swelling of the gel versus time. At the beginning of the experiment, significant absorption of water by the polymer is observed. The equilibrium of swelling is reached after the first 7 h \(Sr = 100\). The water sorption phenomenon by hydrogel mechanically depends on the diffusion of the water molecules in the gel matrix and, therefore, the expansion of the macromolecular chains of the hydrogel under the osmotic effect [44].

To illustrate this phenomenon, we represented in Fig. 2b, the evolution of the equilibrium water content (EWC) of PAAM versus its residence time in distilled water. The maximum EWC is 0.98. Thus, the value determined here, falls in the same range as previously reported values in literature, for similar hydrogel systems [45,46].

The PAAM bead (after swelling) has a diameter of 1.5 cm, it exhibits high mechanical strength and can support a 150 g weight without causing any significant deformation. It is worthy of note that the density of PAAM is extremely low, which is in the range of 0.08–0.092 g cm\(^{-3}\).

3.2.1. Swelling behavior in salt solutions

Concentrations of NaNO\(_3\) and KCl solutions ranging from 0.01 to 1 M were prepared. In each solution, we introduced 13 mg of PAAM. The swelling rates of the polymer were measured after 7 h of contact at different concentrations of NaNO\(_3\) and KCl. It can be shown from Fig. 2c that the rate of swelling decreases with the increasing ionic strength of the medium. The main reason for this ionic dependence on swelling is the balance between the osmotic pressure of the swelling system and the elastic response of the polymer which controls the extent of the swelling. The osmotic pressure results from the difference between the concentrations of mobile ions inside the hydrogel network and the external immersion medium [47]. The increase in ionic concentration reduces the difference in concentration of mobile ions between the polymer gel and the external medium (osmotic swelling pressure), which, in turn, reduces the volume of the gel, i.e. as the gel contracts [48].

3.2.2. Influence of pH on the swelling of PAAM

Fig. 2e illustrates the curve representing the effect of pH on the swelling of PAAM. We notice from the curve, at the very acidic pH we get uncharged gels with a low swelling rate \(Sr = 3.3\). For pH values above 3, the value of the swelling rate is higher \(Sr = 103\). However, at pH values above 8, the swelling rate of the polymer decreases until \(Sr = 52.34\). The results can be attributed to the fact that, as the pH of the solution increases, the amide groups of the crosslinked PAAM chains undergo hydrolysis and are
Fig. 1. (a) IR spectrometry of PAAM, (b) X-ray diffraction of PAAM, and (c) Point of zero charge (ZCP).
converted to carboxylic groups which begin to ionize as the pH increases. This produces anionically charged polymer chains which, due to the mutual repulsion between the carboxylate ions, cause the chains of the network to expand, resulting in increased swelling. However, beyond a certain pH (8.1 in this case), it is observed that the swelling decreases. The reason for the decrease observed may be that, at higher pH, the ionic concentration becomes large in the external medium and, consequently, the swelling decreases [49].

Fig. 2. Evolution of the swelling rate (a) and the EWC (b) of the PAAM in distilled water ($m = 13$ mg, $V = 100$ mL, $T = 25^\circ$C). (c) Effect of concentration of salts on Sr ($t = 7$ h, $m = 13$ mg, $V = 100$ mL, $T = 25^\circ$C). (d) Temperature effect on Sr ($t = 6$ h, $m = 13$ mg, $V = 100$ mL, $T = 25^\circ$C–45°C–75°C). (e) Influence of the pH on Sr ($t = 7$ h, $m = 13$ mg, $V = 100$ mL, pH = 1–13, $T = 25^\circ$C).
3.2.3. Influence of temperature on the swelling of PAAM

To study the effect of temperature on the swelling of PAAM, the experiments were carried out at different temperatures 25°C, 45°C, and 75°C (Fig. 2d). We observe from the curves obtained that the rate of swelling of the gel goes up as the temperature increases, Sr goes from 93.84 to 110.82 from 25°C to 75°C. Indeed, the increase in temperature can affect the elastic properties of the macromolecular chains, they expand and therefore absorb significant quantities of water. When the temperature increases, the interaction behavior disturbs the disentanglement of interpenetrated polymeric chains and destruction of hydrogen bonding between polymer molecules occurs. Thus, the swelling ratio increases, Tippabattini Jayaramudu et al. found the same result [50].

3.3. Safranine dye adsorption studies by PAAM

3.3.1. Effect of shaking time

We tracked in time, the adsorption performance of SF dye (10 mg/L) in contact with PAAM (Fig. 3a). This step is essential to know the time at which the gel balances with the dye solution. It is clear that the curve obtained shows two adsorption stages. The first stage shows a sharp increase in the rate of dye removal to almost 90% with increasing the contact time from 0 to 180 min. Above 3 h comes the second stage where the rate is nearly fixed with increasing the contact time from 180 min to 300 min. This stage is representing the equilibrium stage, that is, the equilibrium was obtained after 180 min contact time with a yield of 90%. Such adsorption behavior is common and credited mainly to the almost total occupation of active sites dye ions with increasing the contact time, under our experimental conditions [51]. Fig. 4 illustrates the adsorption of SF dye on PAAM.

3.4. Kinetic modeling

The adsorption kinetics represents the evolution of an adsorption process parameter over time. It provides information about the mechanism of adsorption and the mode of transfer of solutes from the liquid phase to the solid phase. Two of the most widely used kinetic models, that is pseudo-first-order and pseudo-second-order equations were used to research the adsorption kinetic behavior of SF onto PAAM polymer (Fig. 5). The parameters of the two kinetic models were estimated by linear and nonlinear regressions. The resulting kinetic parameters and error function data are presented in Table 3.

According to Tables 3 and 4, it seems that the pseudo-first-order model is the most suitable model to satisfactorily describe the studied adsorption phenomenon. Indeed, the highest R^2-value and the lowest SEE, χ^2, SE, and F-values were found when modeling the equilibrium data using the pseudo-first-order, for both linear and non-linear regression analysis. Also, the calculated value of the adsorbed capacity at the equilibrium of the pseudo-first-order model agrees with the experimental data. These results show that the adsorption process follows the pseudo-first-order model and that nonlinear regression analysis is the best method to obtain realistic parameters. A similar observation was reported by Moussout et al. [52].

3.4.1. Effect of the adsorbent dose

The effect of the increasing adsorbent dose (from 0.007 g to 0.08) on the adsorption rate of SF dye (10 mg/L) was studied (Fig. 3b). The curve shows that the removal efficiency of SF increases rapidly, when the PAAM dose increase from 0.007 g to 0.026 g. It appeared that the use of 0.026 g of PAAM eliminates more than 90% of the SF dye. Beyond 0.026 g, there is no significant change, the elimination rate reaches almost 96% for mass up to 0.065 g of PAAM. This result is due to the fact that as the adsorbent dosage increases, the adsorbent sites available for the dye molecules also increase and consequently better adsorption takes place [53]. Thus, the adsorbent mass was set at 0.026 g (2 beads) for further experiments. Those results are similar to the ones found by Ghezali et al. [54].

3.4.2. Effect of the pH

The influence of pH on the adsorption of SF dye (10 mg/L) by PAAM was studied using different values of pH (from 1 to 12) (Fig. 3e). The results indicate that at low pH values (pH < 2), there is no adsorption as there is competition between SF- and H+ protons to bind to the surface of the PAAM polymer, then the adsorption efficiency of the dye increases considerably (89%) as the pH value rises from 2 to 4, then it increases slightly as the pH value rises from 4 to 8 reaching its maximum (95.5%). This is in accordance with the pH range of the wastewater [55,56]. A further increase in the pH value results in a significant decrease in the removal rate of the SF dye this is due to the deflation of the PAAM gel at basic pH as shown in Fig. 8. The same results are obtained in other work [57].

3.4.3. Effect of the temperature

The influence of temperature on the adsorption of SF by PAAM gel was also investigated. The experiments were conducted by adding the same amount of PAAM to the SF dye solution at different temperatures (25°C, 35°C, 45°C and 55°C) for 60 min (Fig. 3c). The curve obtained shows that an increase in temperature from 25°C to 55°C is accompanied by an increase in the adsorption efficiency of SF from 52% to 87%. This phenomenon suggests that the reaction is endothermic as the increasing temperature promotes the mechanism of adsorption. It is well known that temperature can affect several aspects of dye adsorption. In fact, the temperature has a positive influence on the increase in the swelling of an adsorbent, the mobility of dye molecules, the number of active sites, and the interaction between adsorbate and adsorbent [58]. Similar findings have also been reported by other researchers as well Liu et al. [59].

3.5. Thermodynamic studies

The thermodynamic study provides additional information on inherent energetic changes of the adsorption process of SF dye by PAAM. The thermodynamic parameters
Fig. 3. Adsorption rate of SF by PAAM versus (a) time ($m = 26$ mg, $V = 100$ mL, $[SF] = 10$ mg/L, $T = 25^\circ$C), (b) PAAM adsorbent dose ($pH = 5$, $V = 100$ mL, $[SF] = 10$ mg/L, $T = 25^\circ$C), (c) temperature ($pH = 5$, $V = 100$ mL, $[SF] = 10$ mg/L, $m = 26$ mg), (e) pH ($m = 26$ mg, $V = 100$ mL, $[SF] = 10$ mg/L, $T = 25^\circ$C). (d) Adsorption capacity versus the initial concentration of SF dye pH ($m = 26$ mg, $V = 100$ mL, $T = 25^\circ$C, pH = 5).
were determined at different temperatures with an initial dye concentration of 10 mg/L (Fig. 6). Table 5 gives the values for standard free enthalpy, standard enthalpy, and standard entropy. It can be deduced from the table that the positive value of ΔH confirms the endothermic nature of the adsorption of SF on PAAM. The negative value of ΔG reveals the spontaneity of the adsorption process. The positive value of ΔS demonstrates randomness at the solid-solute interface. Those results are similar to the ones found by Jawad et al. [60].
3.5.1. Effect of the concentration

To study the effect of the initial concentration of the SF dye on the adsorption capacity of the PAAM gel, the procedure was performed with an initial dye concentration that varies between 10 and 600 mg/L for 180 min, while maintaining constant the other parameters (Fig. 3d). It can be observed from the curve that the adsorption capacity of PAAM increases with increasing SF dye concentration. Beyond a concentration of 280 mg/L, an equilibrium is observed due to the saturation of the active sites of the adsorbent in the presence of a high dye content. In fact, the increase in concentration induces an increase in the driving force of the concentration gradient, thus increasing the diffusion of the dye molecules in solution through the surface of the adsorbent [61]. The maximum load of PAAM in SF expressed in mg of fixed dye per g of PAAM polymer is 620 mg/g. Similar results were found by Rajabi et al. [62].

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Kinetic constants of the pseudo-first and second-order models</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{\text{max,exp}}^\text{exp} = 36.97$</td>
<td>Pseudo-first-order model</td>
</tr>
<tr>
<td>Q_1 (mg/g)</td>
<td>K_1 (min$^{-1}$)</td>
</tr>
<tr>
<td>Linear</td>
<td>39.36</td>
</tr>
<tr>
<td>Non linear</td>
<td>38.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Kinetic error deviation related to the adsorption of SF dye onto PAAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>χ^2</td>
</tr>
<tr>
<td>Linear</td>
<td>Pseudo-first-order</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
<td>0.81</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Pseudo-first-order</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Fig. 6. Van’t Hoff curve of SF adsorption on PAAM.

Table 5

<table>
<thead>
<tr>
<th>T (K)</th>
<th>ΔH (KJ/mol)</th>
<th>ΔS (J/mol K)</th>
<th>ΔG (J/mol)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>$-3,535.58$</td>
<td>$-6,557.01$</td>
<td>$-3,535.58$</td>
<td>0.9992</td>
</tr>
<tr>
<td>308</td>
<td>$-5,298.61$</td>
<td>$-6,857.01$</td>
<td>$-3,535.58$</td>
<td>0.9992</td>
</tr>
<tr>
<td>318</td>
<td>46.41</td>
<td>168.03</td>
<td>$-6,857.01$</td>
<td>0.9992</td>
</tr>
<tr>
<td>328</td>
<td>$-8,490.27$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.1. Effect of the concentration

To study the effect of the initial concentration of the SF dye on the adsorption capacity of the PAAM gel, the procedure was performed with an initial dye concentration that varies between 10 and 600 mg/L for 180 min, while maintaining constant the other parameters (Fig. 3d). It can be observed from the curve that the adsorption capacity of PAAM increases with increasing SF dye concentration. Beyond a concentration of 280 mg/L, an equilibrium is observed due to the saturation of the active sites of the adsorbent in the presence of a high dye content. In fact, the increase in concentration induces an increase in the driving force of the concentration gradient, thus increasing the diffusion of the dye molecules in solution through the surface of the adsorbent [61]. The maximum load of PAAM in SF expressed in mg of fixed dye per g of PAAM polymer is 620 mg/g. Similar results were found by Rajabi et al. [62].
3.6. Adsorption isotherm

The experimental data of SF dye binding to polyacrylamide are processed according to the linear and nonlinear regression of Langmuir and Freundlich (Fig. 7). This modulation aims to be able to verify the model according to which the adsorption takes place and to deduce from it the maximum adsorbed quantities as well as the affinity of the adsorbate for the adsorbent [63]. The Langmuir isotherm assumes that monolayer adsorption occurs at binding sites with homogenous energy levels, no interactions between adsorbed molecules, and no transmigration of adsorbed molecules on the adsorption surface [64]. The Freundlich isotherm is an empirical equation that assumes a heterogeneous adsorbent surface with its adsorption sites at varying energy levels [65]. Table 6 gathers the values of Freundlich and Langmuir constants, extrapolated from the linear curves of the models.

By comparing the R^2, χ^2, SE, and SSE values from Table 7, the sorption isotherm models fitted the experimental data in the order Langmuir > Freundlich. The experimental data were best described by the Langmuir

![Image](a)

![Image](b)

![Image](c)

![Image](d)

Fig. 7. Adsorption isotherm modeling of SF dye removal using PAAM with linear regression ((a) Langmuir and (b) Freundlich) and nonlinear regression ((c) Langmuir and (d) Freundlich).

Table 6
Freundlich and Langmuir adsorption parameters of SF dye on PAAM.

<table>
<thead>
<tr>
<th></th>
<th>Freundlich model</th>
<th>Langmuir model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q_{\text{max},\text{exp}}$ (mg/g) = 620.9</td>
<td>Q_{max} (mg/g)</td>
</tr>
<tr>
<td>Linear</td>
<td>$1/n = 0.472$</td>
<td>666.66</td>
</tr>
<tr>
<td></td>
<td>K_f (mg/g)(L/mg)$^{1/n}$</td>
<td>655.64</td>
</tr>
<tr>
<td>Non linear</td>
<td>$1/n = 0.253$</td>
<td>160.48</td>
</tr>
</tbody>
</table>
isotherm model by providing the highest R^2 and the lowest χ^2, SE, and SSE values. Also, the maximum adsorbed quantity obtained by the Langmuir model is very close to that obtained experimentally. These results indicate that the adsorption of SF dye to PAAM follows Langmuir's model for both linear and non-linear analysis. In addition, the Hall constant $R_L < 1$ implying that the adsorption of SF on PAAM is favorable [31]. On the other hand, the R^2, χ^2, SE and SSE values show that the best-fitting isotherm model is the non-linear regression approach, indeed this method avoids errors, making this analyzing technique the most appropriate to obtain more realistic isotherm parameters. Langmuir is a commonly used model for describing this single-layer adsorption mechanism. Assuming that all the adsorption sites are equivalent and that the adsorption layer is unimolecular in thickness, the resulting adsorbent surface has a limited number of adsorption sites and only one molecule can be occupied at each site [66]. Similar results have also been reported by other researchers as well in the adsorption of SF dye [67,68].

3.6.1. Mechanism of SF dye adsorption

To demonstrate the suggested mechanism of SF dye adsorption on PAAM, Fourier-transform infrared spectroscopy of PAAM before and after dye adsorption, were measured and compared (Fig. 8). After dye adsorption, positions, and intensities of characteristic functional groups such as C–H and C–N stretching bands (2,923 and 1,382 cm$^{-1}$), was unchanged. These results suggested that these functional groups on the surface of PAAM do not participate in the whole adsorption process. However, the N–H and C=O stretching vibration bands at 3,465.44; 622 and 1,382 cm$^{-1}$ showed an important variation in the intensity further confirming that those two functional groups available on surface PAAM hydrogel that can be involved in the adsorption mechanism of SF dye. The adsorption mechanism of SF onto PAAM composite can be attributed to different types of interactions as shown in Fig. 9. Electrostatic attractions can be considered as the most impactful attraction force that can be occurred between SF dye and PAAM surface. This mechanism involves the electrostatic interaction between negatively charged groups of dye with an amino group (–NH$_2$) and (=O) group positively charged available on the adsorbent surface. The adsorption mechanism also includes hydrogen bonding and n–n interaction.

For comparative purposes, the maximum adsorption capacities of some adsorbents, based on polyacrylamide, reported previously for the removal of dyes are summarized in Table 8. The results show that the PAAM hydrogel is a suitable adsorbent for cationic dye removal.

4. Conclusion

We investigated in this study, the swelling behavior of polyacrylamide hydrogel in distilled water and its capacity to adsorb SF dye, by varying physicochemical parameters. It was found that the swelling of the hydrogel and its adsorption capacity were affected by different parameters. The maximum swelling rate of PAAM hydrogel is 100. The maximum amount of SF dye adsorbed by PAAM is 620.9 mg/g. The optimum pH for the adsorption process was 4–8. Kinetic studies showed that the adsorption of SF dye on PAAM reached equilibrium in 180 min. The
Table 8
Comparison of maximum adsorption capacity of dyes onto different adsorbent based on polyacrylamide

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Qm (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyacrylamide/polyacrylate/gum Arabic</td>
<td>48</td>
<td>[69]</td>
</tr>
<tr>
<td>Amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide</td>
<td>70</td>
<td>[39]</td>
</tr>
<tr>
<td>Porous Carrageenan-g-polyacrylamide/bentonite</td>
<td>156.25</td>
<td>[70]</td>
</tr>
<tr>
<td>Hydrolyzed polyacrylamide/cellulose nanocrystal</td>
<td>326.08</td>
<td>[38]</td>
</tr>
<tr>
<td>Polyacrylamide</td>
<td>620.9</td>
<td>The present study</td>
</tr>
<tr>
<td>Porous magnetic polyacrylamide microspheres</td>
<td>1,990</td>
<td>[71]</td>
</tr>
</tbody>
</table>

The related results have been modeled using Freundlich, Langmuir, pseudo-first-order, and pseudo-second-order equations, via both linear and non-linear regression analysis. The best-fitting model was evaluated using five different statistical tools (R^2, χ^2, SEE, SE, and F-test). The examination of all these error estimation methods showed that the Langmuir model and the pseudo-first-order provide the best fit for the experimental equilibrium and kinetic data, respectively (i.e. highest R^2 and lowest χ^2, SEE, SE, F-value). On the other hand, nonlinear regression analysis seems to be adequate to point out the best-fitting model.

Although an increasing number of studies included hydrogel and its application for dyes adsorption, there are still several points that need more attention, such as improvement of adsorption capacity by modification of adsorbent, treatment of multicomponent mixtures of dyes, adsorption application for real industrial effluents, and regeneration studies. Furthermore, studies should also be extended to pilot and full scale to evaluate the potential use of PAAM hydrogel at the industrial level.

Acknowledgements

We gratefully acknowledge the Technical Support Units for Scientific Research (UATRS) under the National Center for Scientific and Technical Research (CNRST), especially to Hanae OUAADARI for the analytical services and instrumentations. We also thank our laboratory members for their generous help.

References

Supplementary information