Sm-doped TiO₂ with boosted photocatalytic detoxification activity benefited from the accelerated separation of photogenerated carriers

Yanbai Chen, Lei Wang, Junbo Zhong, Minjiao Li, Huajun Fan, Congxue Tian

Abstract

In this study, Sm-doped TiO₂ was fabricated by a sol–gel approach. The samples were examined by some analytic techniques. The results demonstrate that Sm³⁺ exists in TiO₂, proven by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Doping Sm into TiO₂ affects the crystal growth and optical capacity of the samples, promotes the separation of photogenerated carriers and increases the content of oxygen vacancies in the sample, boosting the visible-light-driven photocatalytic activity of the sample. Activities of the photocatalysts were investigated by detoxification of Rhodamine B under UV and visible light irradiation. All the Sm-doped TiO₂ samples possess high catalytic activity than TiO₂. When the molar ratio of Sm/Ti is 0.6%, the photocatalyst displays the highest activity, which is 6.2 times higher than that of TiO₂ and even better than commercial TiO₂ (P25) under visible light illumination. This study demonstrates that doping Sm into TiO₂ is a viable strategy to boost the photoactivity of TiO₂.

Keywords: Semiconductors; TiO₂; P25; Sm doping; Photocatalytic activity; Oxygen vacancies

1. Introduction

Water pollution is a hazard to human health and social development. Therefore, the development of effective measures to remove water contaminants remains a constant challenge. Nowadays, many reliable strategies for pollutants removal have been developed and achieved reasonable results. Among them, semiconductor-based photocatalysis has attracted considerable attention thanks to its low cost, no secondary pollution, environmentally friendly and high efficiency [1,2]. Amongst the photocatalysts developed, TiO₂ has been widely used in the photocatalytic field benefited from its long-term chemical stability, low cost, non-toxicity, high oxidizing capacity and Lewis acidity [3,4]. However, rapid recombination of the photoactivated carriers hinders the catalytic efficiency [5–9]. Thereby, it is critical to boosting the partition of photoexcited carriers, ameliorating the photocatalytic activity of TiO₂. Studies show that doping is a reliable strategy to inhibit the reunion of photoactivated charge pairs by altering the electric structures of TiO₂ [10–18], subsequently influencing the segregation of photoinduced carriers.

As a kind of rare earth metal, Sm can act as catalysts or dopant due to incompletely occupied 4f orbitals and empty 5d orbitals. At the same time, the separation efficiency of photogenerated carriers can be improved by forming a new energy level after doping Sm into TiO₂, therefore, photons with less energy can excite the electrons to the...
new energy levels, thus improving light response capacity. Sm\(^{3+}\) ion contains intra-4f orbital, which can influence the electric structures of TiO\(_2\), therefore it is anticipated that doing Sm into TiO\(_2\) can improve the separation of photo-activated carriers. Ramesan et al. studied and reported that Sm doping could affect the photocatalytic activity of TiO\(_2\) [19,20]. However, the effect of Sm doping on the photo-generated carriers separation efficiency of TiO\(_2\) and oxygen vacancies (OVs) produced have been seldom concerned, since separation efficiency of photogenerated carriers and OVs produced can definitely influence the catalytic performance, it is absolutely necessary to study these two factors to reveal how separation efficiency of photogenerated carriers and OVs affect the catalytic activity.

Various methods are employed to dope elements into photocatalysts, such as in the atmosphere [7,21], a hydrothermal method [21,22], magnetron sputtering [23,24], precipitation method [25,26] and so on. Among the doping methods developed, sol-gel approach is a facile and reliable strategy. Sol-gel approach can precisely control the composition, possessing low equipment cost [27]. Therefore, sol-gel method is widely employed to dope ions into photocatalysts [28–31].

Herein, to investigate the effects of doping Sm into TiO\(_2\) on the separation behaviors of photoexcited carriers and photocatalytic properties, we fabricated Sm-doped TiO\(_2\) via a sol-gel strategy. The photocatalysts were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), surface photovoltaic spectrum (SPS) and electron spin resonance (ESR). The existence of Sm in TiO\(_2\) was confirmed by XPS and EDS. Photocatalytic activity of the samples was evaluated by detoxification of Rhodamine B (RhB) under UV and visible light irradiation, the outcomes reveal that Sm-doped TiO\(_2\) displays higher activity than the undoped TiO\(_2\) due to higher separation rate of photoinduced carriers, proven by SPS observation.

2. Experimental section

2.1. Preparation of Sm-doped TiO\(_2\)

Sm-doped TiO\(_2\) was prepared by a sol-gel method as the recipe described by the study of Mohammed [32]. 3 mL Sm(NO\(_3\))\(_3\) aqueous solution was introduced into the sol-gel system. The molar ratio of Sm/Ti is 0.2%, 0.4%, 0.6%, 0.8% and 1.0%, respectively. All the powder samples were calcinated at 723 K for 2 h. Sm-doped TiO\(_2\) was designed as 0.2%, 0.4%, 0.6%, 0.8% and 1.0%, respectively. The undoped TiO\(_2\) was allocated as 0%.

2.2. Characterization of the samples

The texture properties of the samples were analyzed on a SSA-4200 specific surface analyzer. The crystal structure of the catalysts was identified on a DX-2600 X-ray diffractometer. The microstructures of the samples were observed by a VEGA3 SBU SEM with EDS. The light-responsive capacity was measured on a UH-4150 UV-Vis spectrophotometer. XPS was performed on a XSAM 800 X-ray photoelectron spectrometer. SPS was executed on a homemade apparatus. OVs were investigated on an electron spin resonance (ESR, Bruker A300). The yield of \(O_2^−\) was quantitatively compared by nitrotetrazolium blue chloride (NBT)-superoxide radical (\(O_2^−\)) exclusive reaction [33], low concentration after irradiation indicates a high yield of \(O_2^−\) generated in the photocatalytic reaction system.

2.3. Photocatalytic reaction

The activity of the catalysts was assessed by decontamination of 50 mL RhB solution under a 500 W high-pressure mercury lamp shine/visible light irradiation, visible light was provided by a 300 W Xenon lamp with a 420 nm cutoff filter. The concentration of RhB and photocatalyst is 10 mg/L and 1 g/L, separately. Before photocatalytic reaction, the suspension system was intensely stirred in dark for 20 min, the adsorption-desorption equilibrium can be established after 20 min.

To discern the type and role of the active radicals for the destruction of RhB, 2 mL isopropanol (IPA, 5 mmol/L) as hydroxyl radical (\(\cdot OH\)) scavengers, 2 mL ammonium oxalate (AO, 5 mmol/L) as hole (\(h^+\)) scavengers and 2 mL benzoquinone (BQ, 5 mmol/L) as superoxide radical (\(O_2^−\)) scavengers were added into the reaction system [34–36], low decay efficiency of RhB corresponds to strong inhibition effect of scavenger, consequently revealing the leading role of the specific active radicals.

3. Results and discussion

3.1. Characterization of the photocatalysts

To reveal the effects of doping Sm into TiO\(_2\) on the crystal growth of TiO\(_2\), a specific surface area measurement was performed. The surface area for 0%, 0.2%, 0.4%, 0.6%, 0.8% and 1.0% is 71.8, 78.4, 85.2, 92.4, 96.2 and 105 m\(^2\)/g, respectively. Distinctly, all the Sm-doped samples exhibit a higher specific surface than the undoped TiO\(_2\) can remarkably alter the surface area of TiO\(_2\). Evidently, Sm\(^{3+}\) inhibits the crystal growth of TiO\(_2\), reducing the crystallinity and producing more defects. Similar results were acquired when Ag\(^{+}\) was doped into TiO\(_2\) [37]. Commonly, low crystallinity can offer a high surface area, which can provide more active sites for the catalytic reaction. The introduction of suitable defects can facilitate the separation of carriers, heightening the photoactivity [38–41], which can be confirmed by results of low-temperature ESR and photocatalysis.

XRD profiles of the samples fabricated are depicted in Fig. 1A and B, all the diffraction peaks can be indexed as the anatase-type TiO\(_2\) (JCPDS No. 89–4921) [31]. For Sm-doped TiO\(_2\), no peaks for Sm\(_2\)O\(_3\) were detected owing to the low loading of Sm\(^{3+}\). Notably, Sm-doped TiO\(_2\) catalysts appear broader diffraction peak than the reference TiO\(_2\), which solidly suggests that Sm-doped TiO\(_2\) catalysts have a smaller crystal size than TiO\(_2\) according to the Debye-Scherrer equation. The average crystal size of the 0%, 0.2%, 0.4%, 0.6%, 0.8% and 1.0% sample is 12.8, 11.5, 11.1, 8.1, 8.0 and 6.7 nm, respectively. This smaller crystal size of the catalyst is consistent with a high specific surface area.
area, which is in good harmony with the measurement of surface area. Fig. 1B demonstrates that the diffraction peaks of the (101) plane of Sm-doped TiO$_2$, which shows a shift to a lower angle. This is probably caused by the doping with Sm ions. The results suggest the existence of Sm$^{3+}$ in TiO$_2$. The ionic radius of Ti$^{4+}$ is 0.065 nm, while for Sm$^{3+}$, the ionic radius is 0.0958 nm. The doping of Sm$^{3+}$ increases the unit cell, resulting in change towards the smaller 2θ. Similar results were observed when Re$^{4+}$ was doped into TiO$_2$ [42]. XRD results confirm that Sm influences the crystal structure of TiO$_2$, inevitably affecting the separation of carriers and photocatalytic activity of TiO$_2$.

SEM of the samples are illustrated in Fig. 2A and B. Two samples exhibit lump-like shape, indicating that small loading of Sm$^{3+}$ cannot effectively alter the shape of TiO$_2$, the shape of TiO$_2$ is mainly determined by the sol–gel process and baking temperature. Fig. 2C–E show element mappings of the 0.6% sample, evidently, O, Ti and Sm were detected, which further proves that Sm doped TiO$_2$ was successfully prepared. The existence of Sm in TiO$_2$ can be further supported by XPS results.

Fig. 1. Crystal structures of the samples, the enlargement of the (101) plane of the samples.

Fig. 2. SEM information of the samples (A) 0%, (B) 0.6%, element mapping of the 0.6% sample (C).
Light absorption capacity is vital for the generation of active radicals, which performs a significant role in destructing of decontaminants, therefore it is crucial to study the light response properties of the samples prepared. Fig. 3A is the light response capacity of the samples. The results show that Sm-doped TiO$_2$ appears to promote light absorbance ability in the visible light region as the loading of Sm elevating [43,44]. As shown in Fig. 3B, the bandgap of the samples can be estimated by the following formula: $E_g = \frac{1,240}{\lambda}$ [45]. The bandgap of the reference TiO$_2$ is 2.93 eV, the bandgap of Sm-doped samples is about 2.97 eV, the valence band (VB) and conduction band (CB) band edge potential of the reference TiO$_2$ and the Sm doped TiO$_2$ can be obtained by the formula: $E_{VB} = X - E_e + 0.5E_g$, $E_{CB} = E_{VB} - E_g$ [46], respectively. Where E_{CB} and E_{VB} are CB and VB band edge potential, respectively, X is the absolute electronegativity of semiconductors, and E_e is the energy of free electrons on the hydrogen scale (about 4.5 eV) [47]. The value of X for TiO$_2$ is 5.78 eV [48]. Therefore, E_{VB} and E_{CB} of TiO$_2$ is 2.75 and ~0.19 eV, respectively, and E_{VB} and E_{CB} of Sm doped TiO$_2$ is 2.77 and ~0.205 eV, respectively.

To figure out the surface state and micro-environment, XPS analysis was carried out. Fig. 4A is high-resolution XPS spectra of Ti 2p$_{1/2}$, it is evident that the binding energy of Ti 2p$_{1/2}$ shifts to a lower value. The ionic radii of Sm$^{3+}$ (0.0958 nm) are greater than Ti$^{4+}$ (0.065 nm), therefore only a little amount of Sm$^{3+}$ enters the crystal lattice of TiO$_2$ by replacing the Ti$^{4+}$ ions, inducing the shift of binding energy of Ti 2p$_{1/2}$. Fig. 4B is the high-resolution XPS spectra of Sm 3d, the peak at 1083.0 eV can be attributed to the binding energy of Sm$^{3+}$. XPS characterization results definitively confirm the existence of Sm in TiO$_2$. The existence of Sm in TiO$_2$ will inevitably influence the separation of photogenerated carriers.

SPS is an available technology to reveal the separation behavior of the photoexcited carriers. The SPS results are demonstrated in Fig. 6. It is apparent that all the samples display obvious SPS response from 300–400 nm, no detectable SPS signals were observed in the visible light region, which accords well with the bandgap of the samples. Interestingly, all the Sm-doped samples exhibit stronger SPS response than the undoped TiO$_2$, affirming that Sm doping promotes the separation of photoinduced carriers, among all the samples, the 0.6% sample has the strongest SPS response. In light of the measurement principle of SPS, strong SPS signals demonstrate a high separation rate of
photoinduced carriers [49], consequently, the 0.6% sample has the highest separation rate of carriers. The results further demonstrate the high concentration of Sm will inhibit the separation of carriers, a relatively high level of Sm will be the recombination centers of electrons and holes, resulting in a weak SPS response. Although relatively high Sm dopant will exhibit a low separation rate of carriers, the separation rate of photogenerated carriers of 1.0% is still higher than the reference TiO₂. It is commonly acknowledged that the separation rate of photogenerated carriers plays a leading role in influencing the activity of photocatalysts [26,50], thereby it is anticipated that the 0.6% sample will display the highest photocatalytic activity.

OVs are defects induced by O atom deficiency in the lattice. OVs are catalytic centers for the activation of O₂, and the appropriate amount of OVs can promote the generation of •O₂⁻ [51]. OVs can form a new energy level between CB and VB. TiO₂ only can be excited by ultraviolet light. However, due to the introduction of OVs, a new energy level can be formed. O₂ can also be captured by OVs, then •O₂⁻ can be formed by assuming electrons, accelerating the yield of •O₂⁻ and participating in the reaction [52]. Consequently, photocatalysts with OVs will display visible-light-driven photocatalytic activity. As active species, a high level of •O₂⁻ will boost the activity of photocatalysts, therefore, it is significant to study the OVs induced by Sm doping. Fig. 6 is low-temperature ESR results of TiO₂ (0%), P25, 0.6% and 0.8%. The paramagnetic signal at g = 2.004 can be allocated to OVs generated by Zeeman Effect [53]. It is apparent that TiO₂ (0%), P25, 0.6% and 0.8% all have OVs, which indicates that the reference TiO₂ (0%), P25, 0.6% and 0.8% will exhibit visible light-responsive photocatalytic activity. Moreover, ESR signals of the 0.6% sample are stronger than other samples, which firmly indicates that the 0.6% sample produces more OVs. High OVs is beneficial to yield •O₂⁻ which can be supported by NBT observation. The result further demonstrates that excessive Sm results in a low level of OVs, the mechanism needs to be further revealed in near future.

![Graph of SPS results of the samples](image)

Fig. 5. SPS results of the samples.

![Graph of low-temperature ESR signals](image)

Fig. 6. Low temperature ESR signals of the samples (0%, 0.6%, 0.8%, P25).

![Graph of destruction and absorbance](image)

Fig. 7. (A) Destruction of RhB with the existence of the different scavengers (adsorption in dark for 20 min; irradiation time = 20 min; the concentration of scavenger is 0.2 mmol/L) and (B) absorbance of NBT in the different photocatalytic reaction systems (irradiation time = 20 min; NBT dosage = 0.05 mmol/L).
Trapping experiment is a valid method to reveal the role of active species in the photocatalytic reaction. Scavengers can quench the active radicals, resulting in the low catalytic activity of the photocatalyst. The results of the trapping experiment are exhibited in Fig. 7A. With the existence of BQ in the photocatalytic reaction system, the destruction efficiency of RhB drops from 76% to 27.6%, firmly certifying that •O2− exists in the photocatalytic reaction system and •O2 takes a leading role in abating of RhB, coinciding well with OVs characterization. In addition, •OH performs a secondary role, while the role of h+ is minor. E_v of the 0.6% is 2.77 eV, holes can oxidize H2O/OH− to form •OH. As strong oxidants are produced •OH radicals can oxidize the pollutants. Besides, holes also can directly oxidize organic pollutants. However, the oxidation capacity of •OH is stronger than h+, therefore, holes perform a minor role for the photoactivity.

Fig. 8. (A) Photocatalytic decontamination of RhB on the different samples, (B) relationship between ln(C0/Ct) and irradiation time, (C) destruction rate constants of RhB over the different samples, (D) photocatalytic decontamination of RhB on the different samples under visible light irradiation and (E) destruction rate constants of RhB over the different samples under visible light irradiation.
To further compare the level of O2, NBT-O2 measurements were performed. As shown in Fig. 7B, the absorbance of NBT in the Sm-TiO2 system is lower than that in TiO2 catalytic system, and the 0.6% catalytic system generates the highest O2 given the NBT-O2 reaction theory. The observation firmly demonstrates that doping Sm into the TiO2 expedites the yield of O2. As active species with strong oxidation capacity, a high level of O2 can heighten the decontamination of pollutants, thereby the photocatalyst displays high photocatalytic activity.

3.2. Photocatalytic evaluation

Doping Sm into TiO2 influences the crystal growth and boosts the separation of photoinduced carriers, it is anticipated that Sm-doped TiO2 will display higher activity towards the destruction of pollutants. To confirm this idea, photocatalytic properties of the samples were evaluated by degradation of RhB. Fig. 8A shows the destruction of RhB on the samples, it is apparent that the removal of RhB is photocatalysis and the destruction of RhB on all the Sm-doped samples is faster than that on the reference TiO2, the 0.6% sample exhibits the highest activity. To further compare the photocatalytic activity of the samples, the results in Fig. 8A were analyzed. \[\ln(C_t/C_0) = kt \] can well describe the trend of photocatalytic abatement of RhB, where C0 is the concentration of RhB before irradiation, while Ct is the concentration of RhB after illumination, k is the rate constant of RhB over the samples. The relationship between \(\ln(C_t/C_0) \) and t is provided in Fig. 8B, it is evident that \(\ln(C_t/C_0) = kt \) can well represent the degradation of RhB over the samples, and the corresponding destruction rate constants of RhB on the samples are shown in Fig. 8C. All Sm-doped TiO2 photocatalysts exhibit higher activity than the 0%, the activity of Sm-doped TiO2 gradually boosts as the loading of Sm increasing, and the 0.6% sample has the highest activity. However, the activity of Sm-doped TiO2 tends to descend, which suggests that relatively high loading of Sm is not conducive to the activity of the sample. Even though, the activity of the 1.0% sample is still higher than the reference TiO2. For the 0.6% sample, the photocatalytic performance is more than 6 times that of the 0% sample. Such enhancement in photocatalytic activity suggests that doping Sm into TiO2 can significantly improve the photocatalytic activity of TiO2. To further evaluate photocatalytic activity of Sm-doped TiO2 photocatalysts, destruction of RhB under visible light irradiation was performed. Fig. 8D and E show that the 0.6% sample still has the highest activity with visible light, the activity of the 0.6% sample is higher than commercial TiO2 (P25). The photocatalytic performance of 0.6% is more than 7.2 times that of 0% and 1.6 times that of P25 with visible light. The results definitely demonstrate that doping Sm into TiO2 is a robust channel to boost the activity of TiO2. As shown in Fig. 6, the level of OVVs on the 0.6% and the 0.8% samples is significantly increased compared to that on the 0% sample. The relevant literature has confirmed that the introduction of a suitable amount of OVVs results in the formation of a new energy level between VB and CB, promoting the visible light response. The electrons on the new energy level can accelerate photogenerated charge separation and react with O2 to generate O2− [54–56].

In this work, the introduction of OVVs endows Sm-doped TiO2 with higher visible light activity than P25 and the reference TiO2.

4. Conclusions

In this work, we prepared Sm-doped TiO2 by a sol–gel approach with Sm doping concentrations from 0.2%–1.0%. The existence of Sm in TiO2 inhibits the crystal growth of TiO2, boosting the specific surface area. The low-temperature ESR spectra reveal that doping Sm into TiO2 generates defects in the samples, which promotes the segregation of photoinduced carriers and subsequently boosts the formation of O2•−. Degradation of RhB over Sm doped TiO2 is faster than that over the reference TiO2, and the 0.6% shows the highest photocatalytic activity. Doping Sm introduces more oxygen vacancies into the sample, the introduction of oxygen vacancies endows Sm-doped TiO2 samples with visible-light-driven photocatalytic activity. This study demonstrates that doping Sm into TiO2 is a reliable strategy to improve the photocatalytic activity of TiO2.

Acknowledgments

We are grateful to Science and Technology Department of Sichuan Province (No. 2019YJ0457, No. 2019YZYZ0069) and Sichuan Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources (2018FTSZ01, 2018FTSZ02, and 2018FTSZ15) for financial support.

References

