Enhancing the value of agro-food waste in the treatment of water laden with organic pollutants

Djeziri Soumia*, Djellouli Hadja Mebarka

Materials & Catalysis Laboratory, Department of Chemistry, Faculty of Exact Sciences, D. LIABES University, BP 89, Sidi Bel-Abbès, Algeria, email: Somiadjeziri22@gmail.com (D. Soumia)

Received 30 June 2021; Accepted 30 January 2022

ABSTRACT

The present study concerns the valorization of an agro alimentary waste, namely: the olive stone, collected at the level of Sidi Bel Abbes (Algeria), in the field of water charged in organic pollutants treatment. The material was used after calcinations process and chemical activation by phosphoric acid to improve its adsorptive capacity. A range of analyses was carried out, for the characterization of the adsorbent used, among them: the infrared spectroscopy, iodine index, moisture content and ash content. In order to test the performance of activated carbon this is concerned in organic pollutants and in particular phenol considered as very toxic pollutant. The effect of several parameters such as contact time, initial concentration, pH of the solution and temperature were studied. All the results obtained show that the adsorption kinetics of phenol on prepared activated carbon is well described by the pseudo-second-order. The adsorption isotherms of the studied adsorbent/adsorbate systems are satisfactorily described by the Temkin model. On the other hand, the thermodynamic study revealed that the adsorption is exothermic of physisorption type. The obtained results demonstrate the possibility of olive pits valorization in the form of activated carbon with what all this implies as socio-economic impacts.

Keywords: Adsorption; Activated carbon; Olive stones; Phenol

1. Introduction

Nowadays, the increasing request for adsorbent materials for environmental protection processes is leading to further research in the manufacture of activated carbons from non-conventional materials, in particular from vegetable waste.

The raw materials used as precursors are of various origins: (i) Lignocellulosic derivatives (wood, coconut shells, almond, hazelnut and walnut shells, apricot pits, apple pulp, peach pits as well as olive pits, date pits…). (ii) Polymers, as well as mineral carbons [1].

The elaboration of activated carbons from vegetable wastes is however very interesting throughout the economic point of view because we are taking profits from simple transformations, from a direct application of these starting materials [2]. Many scientists from different disciplines are increasingly interested in the identification and elimination of environmental pollutants or toxic substances that cause morbidity and mortality in humans or animals. For this purpose, adsorption on activated carbon is often used, in particular for the elimination of toxic substances, organic or inorganic micro pollutants from water, the discoloration of vegetable oils and the purification of numerous products (juice, sugar syrup, wine, beer, etc.) [3].

The main objective of this work is devoted, firstly, to the preparation of an activated carbon from agro alimentary waste, olive stones, then we characterized it by several methods. Second, we studied the adsorption of a model organic compound, phenol, on the prepared activated carbon.
2. Materials and methods

2.1. Preparation of activated carbon from olive stones

The olive stones used in this study were collected in the region of Sidi Bel Abbes. The following protocol allows obtaining the activated carbon from the olive stones.

2.1.1. Purification

The olive stones are washed several times with running water to remove adhering impurities and dust, as well as water-soluble substances, until a fairly clear washwater is obtained [4]. After washing, the cores are dried for 24 h at a temperature of 110°C in an oven and then crushed with an electric grinder and sieved to obtain a powder.

2.1.2. Carbonization

After drying, the raw material is carbonized at the precise temperature 400°C for 1 h in a muffle furnace (Nabertherm).

2.1.3. Activation

Once the stones are calcined at 400°C, they underwent a chemical activation. The activating agent used was an acid (H3PO4). Indeed, this agent has been widely used for the activation of carbons [5]. For the activation, 20 g of calcined olive stones were dispersed in a volume of a phosphoric acid solution (1N) under electromagnetic stirring. The contact time initially set at 3 h. The impregnated adsorbents are separated by simple filtration. Then the mixture is put in the oven for 1 h at 110°C.

2.1.4. Washing and drying

After cooling, the prepared activated carbon was cleaned several times with distilled water in order to reach a neutral pH [6]. The last step is the drying of the prepared adsorbent at 110°C, for 24 h, until constant weight is obtained. The obtained activated carbon was stored in boxes for its use.

2.2. Characterization of prepared activated carbon

The knowledge of these characteristics is necessary to identify the efficiency of our material.

2.2.1. Moisture content

The moisture content represents the amount of water physically not bound to the activated carbon. Moisture is a ratio expressed as a percentage, it is determined by drying the adsorbent in an oven at 105°C until its weight remains constant, it is calculated by the following relationship [4]:

\[H\% = \frac{m_0 - m_1}{m_0} \times 100 \]

where \(H\% \): moisture in mass percentage (%), \(m_0 \): mass of adsorbent before drying (g), \(m_1 \): mass of adsorbent after drying (g).

2.2.2. Ash rate

This is the inorganic, inert, amorphous and unusable part present in the material [6]. A 1 g sample of absorbent is placed in a crucible. This crucible is introduced into the oven and we heated for 1 h up to 1,000°C. After cooling, we weighed the crucible. The ash content is calculated by the following formula [4]:

\[\%\text{Ash} = \frac{p_b - p_i}{p_i} \times 100 \]

where \(p_b \): weight of the filled crucible before carbonization in (g); \(p_i \): weight of the crucible filled after carbonization in (g).

2.2.3. Iodine value

The iodine index (iodine number) is a microspore content measure of an adsorbent material. The iodine number is an indicator of the porosity of an activated carbon [7]. The iodine adsorption capacity of each material was determined according to the following procedure: 10 mL of a 0.01 N iodine solution in an Erlenmeyer flask and we dosed with a 0.1 N sodium thiosulfate solution, in a few drops presence of a starch solution as indicator until the color disappeared. The reading volume corresponds to \(V_c \). 0.05 g of activated carbon to an Erlenmeyer flask containing 15 mL of a 0.1 N iodine solution with stirring for 5 min. afterwards; we filtered and assayed the iodine of 10 mL filtrate by 0.1 N sodium thiosulfate solution in the presence two drops presence of a starch solution [8].

The iodine value is calculated by the following formula:

\[\text{Id} = \frac{(V_c - V_i) \times N \times (126.9) \times 15}{M} \]

where \((V_c - V_i) \): difference of the blank and adsorbent titration results in (mL of 0.1 N sodium thiosulfate); \(N \): normality of the sodium thiosulfate solution in (mol/L); 126.9: the atomic mass of iodine; \(M \): the mass of the adsorbent in (g).

The results of moisture analysis, ash content and iodine index of raw material, both calcined materials and activated carbons are shown in Table 1.

2.2.3.1. Discussion of results

From our results, we noticed that the ash content of the materials: crude, calcined and prepared activated carbon represent a low content of mineral matter (ash).

These materials also have low moisture content; this finding highlights a low retention of water content [8]. For the iodine value, the results vary according to the calcination and the activation used (activating agent). The prepared activated carbon gives a good iodine value with a value of 1,104.03 mg/g which was high compared to the value found by Haimour and Emeish [9].

In fact, according to the literature, the moisture content and the ash content must be low for excellent adsorbents. And for activated carbons that have an iodine index
greater than 950 mg/g have a power of adsorption of small molecules [8].

2.2.4. Structural analysis by Fourier-transform infrared spectroscopy

The analysis of materials by infrared spectroscopy (IR) was carried out at the materials and catalysis Laboratory of Sidi Bel Abbes University (Algeria), in order to identify the functional groups [10] present on the surface of the latter. This analysis was conducted on an infrared spectroscopy apparatus of Fourier-transform infrared spectroscopy (FTIR) type. The analysis was done on a range of wave numbers from 650–4,000 cm–1. The infrared spectra of the different adsorbents: raw materials olive stone; calcined olive stones at 400°C and the prepared activated carbon are shown in Figs. 1–3.

We have gathered the interpretation of the spectra in Table 2.

2.2.4.1. Discussions

The broadband of 3,347.78 cm –1 corresponding to the hydrogen valence vibration of the O–H hydroxyl groups (of carboxyls, phenols or alcohols) is only found in the spectrum of olive stones. These functions are totally absent in the spectrum of calcined olive stones. This band is also absent in the spectrum of activated carbon.

For the bands from 2,855.2 to 2,991.4 cm –1 and 1,371.5 to 1,409.2 cm–1 which correspond to the C–H elongation vibration of the aliphatic molecules [12] of the aromatic rings and to the C–H bond deformation vibration of the methyl and methylene groups successively are much weaker for calcined stones at 400°C and activated charcoal with a variation of the intensity. We observed a small decrease in the intensity of the peaks 1,735.65 cm–1 for calcined and chemically activated olive cores comparable with crude olive stones, this is due to the carbonization and activation for the bands that correspond to the C=C bonds appear in the spectrum of raw olive stones with several neighboring peaks and almost the same intensity. After carbonization followed by activation, we noticed a decrease in the number of peaks with a variation in intensity.

The vibration band peak 1,031.30 cm –1 which represents the valence phenols vibration of C–O bonds, carboxylic acid, alcohol and ester is very intense (strong) for the raw olive core spectrum but after carbonization, the intensity is decreased(weak) and same for the activated charcoal. Finally, the bands from 742.49 to 893.6 cm–1 of out-of-plane deformation vibration CH in aromatic rings are present in all spectra with a variation of intensity.

3. Results and discussion

In this last part, we approach the study of an activated adsorption phenomenon carbon synthesized based on olive rings to purify aqueous solutions containing phenol. In a first step, we studied the influence of different parameters on the adsorption capacity: the mass of adsorbent, the contact time, the pH of the solution, the temperature and the concentration of the adsorbed molecule. Afterwards, we tried to apply different kinetic laws such as the pseudo-first-order, pseudo-second-order, Elovich velocity equations and the intra-particle and external diffusion
model to simulate the pollutants experimental data of adsorption kinetics. Then, we started to apply the thermodynamic relations to calculate the thermodynamic quantities and determine the type of adsorption. Finally, we studied the adsorption isotherms whose parameters express the surface properties and the affinity of the adsorbent.

3.1. Phenol analysis

Before studying the phenol phenomenon of adsorption, we must first determine its maximum wavelength λ_{max} and verify the validity of the Beer–Lambert law for the concentration range studied.

3.1.1. Wavelength determination of the absorption maximum λ_{max}

We prepared solutions of phenol with concentrations between 1 and 100 mg/L. And we measured the wavelengths λ between 200 and 300 nm with a Perkin-Elmer UV/VIS Spectrometer Lambda. The maximum absorption wavelength (λ_{max}) for phenol is at 269.93 nm, as shown in Fig. 4.

3.1.2. Calibration curve (Application of the Beer–Lambert law)

The calibration curve is obtained by expressing the variation of the absorbance as a function of phenol concentration $A = f(c)$ Beer–Lambert’s law: When a monochromatic radiation beam of intensity I_0 crosses a colored substance, an absorption of energy takes place so that the intensity of the emerging incident beam I is lower. This monochromatic absorption follows the Beer–Lambert law which is expressed as follows [16]:

$$A = \varepsilon I C$$

where A is the absorbance at a wavelength λ (without unit); ε is the molar extinction coefficient, expressed in L/mol cm; l is the thickness of the cell (in cm); C is the molar concentration of the solution (in mol/L).

<table>
<thead>
<tr>
<th>Vibration bands</th>
<th>Interpretations of bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,347.78 cm$^{-1}$</td>
<td>Represents a broadband with an average intensity corresponding to the hydrogen valence vibration of O–H hydroxyl groups (of carboxyls, phenols or alcohols) [11].</td>
</tr>
<tr>
<td>1,735.65 cm$^{-1}$</td>
<td>Represents a thin band with an average intensity corresponding to the vibration of elongation at C=O bonds of carbonyl functions (ketones; aldehydes; carboxylic acids) [12].</td>
</tr>
<tr>
<td>1,371.5–1,409.2 cm$^{-1}$</td>
<td>Represents a thin band with an average intensity corresponding to the vibration of the deformation of the C–H bonds of the methyl and methylene groups [12].</td>
</tr>
<tr>
<td>1,031.9–1,233.72 cm$^{-1}$</td>
<td>Represents different bands (weak and strong) corresponding to the valence vibration [15] of the C–O bonds of phenols, carboxylic acid, alcohol and ester [12].</td>
</tr>
<tr>
<td>742.49–893.6 cm$^{-1}$</td>
<td>Are due to the out-of-plane deformation mode of C–H in aromatic rings [11] with thin bands and moderately strong intensity.</td>
</tr>
</tbody>
</table>
The experimental data reported in Fig. 5 indicate the linear relationship between absorbance and concentration with a high regression coefficient ($R^2 = 0.998$).

The unknown phenol concentration determined from the application of Beer–Lambert law. \(A = 0.01449C \).

3.2. Parameters optimization

We calculated the adsorption yield by the following formula [17]:

\[
R\% = \frac{c_0 - c_t}{c_0} \times 100
\]

where \(R\% \): adsorption efficiency, \(c_0 \) = initial concentration of adsorbate and \(c_t \) = final concentration of the adsorbate after the time.

3.2.1. Mass influence

The effect of activated carbon mass on phenol adsorption is shown in Fig. 6, we varied the mass of activated carbon from 0.2 to 2.5 g, the concentration of phenol is 100 mg/L at a room temperature, and the contact time is 60 min.

Fig. 6 gives us the percentage of phenol adsorption as a function of the adsorbent mass. This figure shows that in all cases, the percentage of this pollutant removal increases when the mass of the adsorbent increases until total saturation. This is easily understandable, because the increase in the mass of the adsorbent increases the specific surface and thus the number of available adsorption sites [16]. The curve in Fig. 6 shows that 1.5 g of carbon mass is able to bind a maximum of phenol. For this, we will continue our experimental work by fixing the optimal mass of activated carbon which is equal to 1.5 g.

3.2.2. Influence of contact time

To study the kinetics of adsorption on activated carbon from olive pits, a volume of phenol solution about 100 mL (100 mg/L) is mixed with 1.5 g of adsorbent mass. The whole is stirred for different contact times varying from 5 to 120 min at room temperature.

Fig. 7 represents the variation of phenol adsorption as a function of time. This figure shows that the adsorption phenol capacity increases as a function of contact time until reaching a saturation level. The evolution of the phenol adsorption process as a function of time shows that the equilibrium is established after 60 min, from this contact time all the adsorption sites become occupied. According to this result, we will continue the phenomenon study adsorption by fixing the contact time at 60 min.

3.2.3. pH influence

For a given carbon, the nature of the interactions and the adsorption capacity will be modified according to the pH value. The pH is one of the most important parameters to be taken into account during an adsorption process because it affects both the external charge of the adsorbent and the degree of the adsorbate ionization [4]. To study the
pH influence on the adsorption of phenol by activated carbon prepared using 100 mL concentration solution 100 mg/L for different pH, at room temperature and contact time of 60 min, the activated carbon amount used is 1.5 g. The results are shown in Fig. 8.

From Fig. 8, we observe a decrease of phenol removal percentage when the solution pH increases. When the pH of the solution is acidic, the adsorption efficiency is very high, and we notice that there is a maximum of 92.85% adsorption for pH = 1.83. According to these results, the pH = 1.83 is considered as an optimal pH.

3.2.4. Temperature influence

The influence of temperature was studied with phenols solutions (100 mL) at pH = 1.83, immersed in a thermostatically controlled water bath to keep the desired temperature constant, the values of temperatures studied were 20°C, 50°C, 60°C, 65°C and 75°C. The contact time is 60 min.

From the results given in Fig. 9, we can deduce the following: The adsorption of phenol is maximum at 20°C; it reaches a removal rate of 92.85%. The amount of phenol adsorbed decreases as the temperature increases, it is therefore favored at low temperature which shows that the process is exothermic and we can admit that it is a physisorption [18].

3.2.5. Influence of concentration

The tests were carried out by stirring 1.5 g of the adsorbent for 60 min in phenol solutions with concentrations ranging from 25 to 350 mg/L. The tests were performed at acidic pH (1.83) at room temperature. The residual concentrations were determined and then evaluated to follow the evolution of the quantity adsorbed per unit mass as a function of the initial concentration (Fig. 10). The residual concentration of adsorbed impurities is measured using the following equation [19]:

\[q_e = \frac{C_0 - C_e}{M} V \]

where \(q_e \): amount of adsorbed solute (mg/g); \(V \): volume of solution (l); \(C_0 \): mass concentration of solute (mg/L); \(C_e \): residual [19] concentration of solute at adsorption equilibrium (mg/L); \(M \): mass of adsorbent used (g) [13].

Fig. 10 represents the variation of the adsorbed phenol amount as a function of its initial concentration. The results show that the adsorption capacity of phenol increases with its initial concentration increase.

3.3. Modeling of adsorption kinetics

Several kinetic models were used to interpret the experimental data, to give essential information for the use of these activated carbons in the adsorption field. We have adopted five kinetic models.

These models are: pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion and external diffusion models.

3.3.1. Intraparticle diffusion

Described by the model of Weber and Morris (1963) [15,18]:

\[q_t = K_i \cdot t^{1/2} + C \]

where \(K_i \): velocity constant of intraparticle diffusion \((mg/g \ min^{1/2})\); \(C \): the intersection of the line with the y-axis.
the case where the value of C is zero, intra-granular diffusion is the limiting step in the adsorption kinetics [18,20].

Fig. 11 shows the linear form of this equation that was described previously which means the q_i trace as a function of $t^{1/2}$ [18].

3.3.2. External diffusion step

In 2007, Bhattacharyya and Cupta proposed the model [18]:

$$\ln \left(1 - \frac{q_i}{q_e}\right) = -k_{ad} \cdot t + C$$

(8)

where q_i: amount of solute adsorbed per unit mass of adsorbent at time t (mg/g), k_{ad}: diffusion rate constant in the liquid film (min$^{-1}$). C: constant: the smaller the value of C, the more the extra-granular diffusion governs the adsorption process. In the case where C is null, the extra-granular diffusion is the limiting step of the adsorption kinetics [18].

We have plotted $\ln(1 - q_i/q_e)$ as a function of time in Fig. 12.

3.3.3. Surface reaction step

The expressions found most often in the bibliography.

3.3.3.1. Expression of Lagergren pseudo-first-order (1898) [18]

$$\ln(q_e - q_i) = \ln(q_e) - k_1 \cdot t$$

(9)

where k_1: pseudo-first-order rate constant (min$^{-1}$).

The plot of $\ln(q_e - q_i)$ vs. time is shown in Fig. 13.

3.3.3.2. Expression of the pseudo-second-order very often used [18]

$$\frac{1}{q_i} = \frac{1}{k_2 q_e^2 \cdot t} + \frac{1}{q_e}$$

(10)

where k_2: rate constant of pseudo-second-order (g/mg min).

Fig. 14 shows inverse variation of adsorbed quantity according to inverse of time.

3.3.3.3. Elovich model

It can be expressed as:

$$q_i = \frac{\ln(\alpha \cdot \beta_e)}{\beta_e} + \frac{1}{\beta_e} \ln t$$

(11)

where α: the initial adsorption rate (mg/g min) and β: the desorption constant (g/mg min). Using a simple graph $q_i = f(\ln t)$ which is shown in Fig. 15, we have determined the values of α and β.

3.3.3.4. Calculation and model constants

The constants of each model are grouped in Table 3.

![Fig. 11. Graphical representation of the kinetic modeling, the intraparticle diffusion model.](image1)

![Fig. 12. Graphical representation of the kinetic modeling, the external diffusion model.](image2)
The validity of kinetic adsorption model is examined from the R^2 value of the correlation coefficient, the higher this factor the more favorable the model is for the adsorption study process [4]. From the results grouped in Table 3, all the kinetic models have very large regression coefficient values ($R^2 > 0.90$), but the pseudo-second-order model has a higher correlation coefficient value ($R^2 = 0.9928$) than the other models, so we can deduce that the pseudo-second-order model is the one that better describes the adsorption process of phenol on the prepared activated carbon. Also, the value of the adsorbed quantity calculated by the kinetic model of pseudo-second-order is very close to the value of experimental adsorbed quantity.

3.4. Thermodynamic quantities

In order to confirm the previous findings, we proceeded to the determination of the thermodynamic parameters of this process in the studied temperature range such as the standard free enthalpy ΔG°, the standard enthalpy ΔH° and the standard entropy ΔS° which were determined using the following equations [21–23]:

\[
K_d = \frac{Q_e}{C_e}
\]
\[
\Delta G^\circ = -\Delta H - T\Delta S^\circ = -RT\ln K_d \tag{13}
\]
\[
\ln K_d = \frac{\Delta S}{R} - \frac{\Delta H}{R} \tag{14}
\]

where K_d: distribution constant, Q_e: adsorbed quantity at equilibrium (mg/g), C_e: equilibrium concentration of the solute (mg/L), ΔH°: enthalpy (kJ/mol), ΔS°: entropy (kJ/mol), ΔG°: free enthalpy (kl/mol), R: constant of perfect gases (8.314 J/mol K [24]) and T: absolute temperature (K).

By exploiting the data provided by the linear regression of the curve presented in Fig. 16.

Table 3

<table>
<thead>
<tr>
<th>Kinetic models</th>
<th>Constants</th>
<th>Prepared activated carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraparticle diffusion</td>
<td>K_i (mg/g min$^{1/2}$)</td>
<td>1.08161</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9554</td>
</tr>
<tr>
<td>Diffusion step</td>
<td>K_d (min$^{-1}$)</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9093</td>
</tr>
<tr>
<td>Pseudo-first-order</td>
<td>k_1 (min$^{-1}$)</td>
<td>0.0653</td>
</tr>
<tr>
<td></td>
<td>q_e (mg/g)</td>
<td>10.735</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9796</td>
</tr>
<tr>
<td>Pseudo-second-order</td>
<td>k_2 (min$^{-1}$)</td>
<td>0.000729</td>
</tr>
<tr>
<td></td>
<td>q_e (mg/g)</td>
<td>5.99</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9928</td>
</tr>
<tr>
<td>Elovich</td>
<td>α_e (mg/g min)</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td>β_e (g/mg min)</td>
<td>0.475</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9267</td>
</tr>
</tbody>
</table>
According to the graph, there is a line with an interesting regression coefficient ($R^2 = 0.987$).

The values of the thermodynamic parameters are grouped in Table 4.

The enthalpy ΔH° is negative, which implies that the process of adsorption is exothermic [21,25]. We also noticed that ΔG° increases with the increase of the solution temperature, which can be explained by the fact that the adsorption becomes very difficult and disadvantaged when the temperature becomes very large [4] [23].

The phenol adsorption process is of physical adsorption type since the enthalpy value is less than 40 kJ/mol [26]. The negative value of ΔS° indicates that there is a decrease in disorder in the solid/solute interface solution system during the adsorption process [21,27].

3.5. Adsorption isotherms

Adsorption isotherms are often exploited for the determination of the maximum binding capacities of pollutants and for the identification type of adsorption (physical or chemical). The equilibrium behavior of sorbents can be elucidated by isothermal adsorption models [28]. The results treated according to the mathematical models of Langmuir and Freundlich, Elovich, Temkin, Dubinin-Radushkevich, Kiselev, Fowler-Guggenheim, Hill de Boer allowed us to calculate the maximum capacity of adsorption as well as the parameters 14 of adsorption [4].

3.5.1. Isotherm of Freundlich

$$q_e = K_f C_e^{1/n}$$

$$\log (q_e) = \log (K_f) + \frac{1}{n} \log (C_e)$$

where K_f (ln mg$^{-1}$/g) and n (dimensionless) are experimental constants [29]. The Freundlich isotherm allows us to plot $\ln q_e$ as a function of $\ln C_e$ as shown in Fig. 17.

3.5.2. Langmuir isotherm

Fig. 18 shows the variation of $1/q_e$ as a function of $1/C_e$ which signifies the Langmuir model. The linear form of the Langmuir isotherm [21]:

$$\frac{1}{q_e} = \frac{1}{q_m K_L} + \frac{1}{q_m C_e}$$

where K_L: equilibrium constant of Langmuir L/mg, q_m: quantity adsorbed at equilibrium and maximum successively mg/g.

Table 4

<table>
<thead>
<tr>
<th>Settings</th>
<th>T (K)</th>
<th>ΔG° (kJ/mol)</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>293</td>
<td>0.35305</td>
<td>-8.21941</td>
<td>-28.997</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>4.936116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>5.160884</td>
<td>-8.21941</td>
<td>-28.997</td>
</tr>
<tr>
<td></td>
<td>338</td>
<td>5.75861</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>6.130786</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 16. Phenol influence of the temperature on the adsorption.

Fig. 17. Freundlich isotherm model.

Fig. 18. Langmuir isotherm model.
3.5.3. Isotherm of Elovich

It is expressed by the following relationship:

\[
\frac{q}{q_m} = \theta = K_E C_e \exp \left(\frac{q}{q_m} \right)
\]

(18)

where \(K_E \), Elovich constant (in L/mg) [5] Elovich isotherm means a simple plot of \(\ln(q/C_e) \) as a function of \(\ln q \) as shown in Fig. 19.

3.5.4. Temkin isotherm

Plotting \(q_e \) or \(q \) as a function of \(\ln C_e \) according to the following expression [8] and as shown in Fig. 20:

\[
\frac{q_e}{q_m} = \exp \left(\frac{R T}{\Delta Q} \ln(K_T C_e) \right)
\]

(19)

where \(R = 8.314 \) J/mol K; \(T \), absolute temperature (in K); \(\Delta Q \), adsorption energy variation (J/mol); \(K_T \), Temkin constant (in L/mg).

3.5.5. Isotherm of Dubinin–Radushkevich

The Dubinin–Radushkevich isotherm is given by the following equation:

\[
\ln \left(\frac{q}{q_m} \right) = -K_D \varepsilon^2
\]

(20)

where \(q_m \) the maximum adsorption capacity in the micropores, \(K_D \), the constant related to the adsorption energy [5]. We plotted \(\ln q \) as a function of \(\varepsilon^2 \) according to the Dubinin–Radushkevich model as Fig. 21.

3.5.6. Isotherm of Kiselev

The following relationship gives the Kiselev equation, known as the localized monolayer adsorption isotherm equation. The Kiselev equation can be expressed as:

\[
\frac{1}{C_e(1-\theta)} = \frac{K_i}{\theta} + K_n k_n
\]

(21)

where \(k_i \); equilibrium constant of the adsorbate–adsorbent interaction; \(k_n \); equilibrium constant of complex formation between neighboring molecules [30].

The Kiselev isotherm allows to plot the equilibrium constant as a function of \(x = \) as shown in Fig. 22.

3.5.7. Isotherm of Fowler–Guggenheim

The Fowler–Guggenheim equation assumes that the amount adsorbed at saturation \(q_m \) and the interaction energy \(W \) are independent of temperature. One can also express the equation in the form [30]:

\[
\ln \left(\frac{C_e(1-\theta)}{\theta} \right) = -\ln K_{FG} + \frac{2\theta W}{RT}
\]

(22)

where \(W \); interaction energy; \(K_{FG} \); temperature dependent constant the Fowler–Guggenheim isotherm allows to plot as a function of (Fig. 23).
3.5.8. Isotherm of Boer’s Hill

These two authors have adopted an equation type of state van der Waals type equation of state to develop an adsorption isotherm equation, which takes into account the interactions and mobility of the adsorbed phase assumed to be delocalized.

\[
\ln \left(\frac{C}{k_1} \right) \ln \left(\frac{1 - \theta}{\theta} \right) = -\ln k_2 \left(\frac{k_2 \theta}{RT} \right) - \theta
\]

where \(k_1\): constant which represents the adsorbate–adsorbent interactions; \(k_2\): is the interaction constant between adsorbates [30].

The Hill de Boer isotherm allows to plot as a function of as shown in Fig. 24.

Boer’s Hill isotherm model The linear representations of the experimental values of this adsorption process allowed us to determine the equilibrium parameters and the values of the constants of each type of isotherms calculated by linear regression (Table 5).

From the modeling results of the adsorption isotherms grouped in Table 5, we observed that most of the linear models represent well the adsorption isotherms of phenol on prepared activated carbon with non-negligible correlation coefficients. The values of the regression coefficients indicate that the adsorption process of phenol by the olive kernel activated carbon is described favorably by the Temkin isotherm (with excellent linear regression coefficients \(R^2 = 0.9933\)) which is very close to unity. Temkin’s model shows that the heat of adsorption due to interactions with the adsorbate decreases linearly with the recovery rate [22]. The value of the energy obtained by the Temkin isotherm for the adsorption of phenol by activated carbon studied is lower than 40 kJ/mol indicating physisorption as the dominant type of adsorption. Indeed, the value of the regression coefficient shows that the Dubinin–Radushkevich model \(R^2 = 0.9827\) is adequate for a good description of this adsorption of phenol on the synthesized activated carbon. Due to the fact that the regression coefficients were not satisfactory for the Elovich and Kiselev isotherm, therefore they do not model our isotherm of phenol adsorption on the prepared activated carbon.

4. Conclusion

The study carried out in this work concerns the carbonization and then material activation of hard vegetable origin; the olive stones; to transform it into activated carbon, and then use it for the adsorption of organic pollutants including phenol. The experimental study conducted from all the results obtained, it is evident that the processes, carbonization, activation, and use of different activating agents are effective because our activated carbon has important properties according to their characterizations by ash content, moisture content, iodine index and Fourier transform infrared spectroscopy. The results FTIR analysis of prepared activated carbon revealed different oxygenated groups beside the carbonic structures of aromatic, aliphatic and carboxyl origin. The iodine value found of the synthesized activated carbon is quite high (>950 mg/g).
Table 5
Isotherm constants models

<table>
<thead>
<tr>
<th>Models isotherms</th>
<th>Constants</th>
<th>Prepared activated carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotherm of Freundlich</td>
<td>K_n (mg/g)(L/mg)</td>
<td>0.0645</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.8663</td>
</tr>
<tr>
<td></td>
<td>K_0 (L/mg)</td>
<td>0.00678</td>
</tr>
<tr>
<td>Langmuir isotherm</td>
<td>q_e (mg/g)</td>
<td>5.804</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.7853</td>
</tr>
<tr>
<td></td>
<td>q_0 (mg/g)</td>
<td>–14.471</td>
</tr>
<tr>
<td>Isotherm of Elovich</td>
<td>K_0 (L/mg)</td>
<td>–0.0037</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.2448</td>
</tr>
<tr>
<td>Temkin isotherm</td>
<td>ΔQ (J/mol)</td>
<td>6.4981</td>
</tr>
<tr>
<td></td>
<td>K_0 (L/mol)</td>
<td>0.0703</td>
</tr>
<tr>
<td>Isotherm of Dubinin–Radushkevich</td>
<td>K_0 (mol/J)</td>
<td>7335.8</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.9933</td>
</tr>
<tr>
<td></td>
<td>k_t (L/mg)</td>
<td>0.0021</td>
</tr>
<tr>
<td>Isotherm of Kiselev</td>
<td>k_t (L/mg)</td>
<td>15.048</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.4298</td>
</tr>
<tr>
<td>Isotherm of Fowler–Guggenheim</td>
<td>K_w (L/mg)</td>
<td>0.00047</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>–3.1079</td>
</tr>
<tr>
<td></td>
<td>k_t (L/mg)</td>
<td>0.00247</td>
</tr>
<tr>
<td>Isotherm of Boer’s Hill</td>
<td>k_t (J/mol)</td>
<td>19503.2</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.8964</td>
</tr>
</tbody>
</table>

A series of experiments was then carried out to study the influence of some parameters on the adsorption capacity of phenol by prepared activated carbon such as adsorbent mass, contact time, pH, temperature and initial phenol concentration. The adsorption capacity of phenol increases with the increase of the adsorbent mass, however, it decreases when the pH of the phenol solution decreases. It is noticeable that an acid pH has a favorable effect on the adsorption process of phenol by carbon. All the obtained results show that the kinetics of adsorption of phenol on the prepared activated carbon is well described by the pseudo-second-order model with a correlation coefficient close to the unit $R^2 = 0.9928$ and the value of the calculated adsorbed quantity is very close to the value of experimental adsorbed quantity. The modeling of the phenol adsorption isotherms obtained, agrees well with the Temkin model for prepared activated carbon (with excellent linear regression coefficient ($R^2 = 0.9953$) which is very close to unity), and the Temkin energy highlights an exothermic adsorption. The thermodynamic study revealed that the adsorption is nonspecific and exothermic, and the examination of the standard enthalpy value of the adsorption (<40 kJ/mol) shows that it is a physisorption. It is important to point out at the end of this study that the exploitation of this kind of materials is very interesting from the economic point of view in the water decontamination.

References

