Enhanced photocatalytic degradation of tetracycline over carbon quantum dot-decorated MIL-101(Fe) composite

Kun Bian, Fang-yan Chen*, Chen-chen Hao, Yu-bin Tang

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China, Tel.: 86-511-85605157; email: chenfangyan@just.edu.cn (F.-y. Chen), Tel.: 86-511-85605156; email: 1070914202@qq.com (K. Bian), Tel.: 86-511-85605156; email: 1050948643@qq.com (C.-c. Hao), Tel.: 86-511-84448601; email: ybbill@163.com (Y.-b. Tang)

Received 5 April 2022; Accepted 3 August 2022

Abstract
Carbon quantum dots (CQDs) were deposited on the surface of MIL101(Fe) by using hydrothermal method to obtain CQDs/MIL101(Fe) composite. The prepared composite was characterized by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis diffuse reflection spectrum. The photocatalytic performance of CQDs/MIL101(Fe) composite was evaluated by photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The mechanism of enhanced photocatalytic performance was discussed. The characterization results reveal that CQDs is anchored tightly on the surface of MIL101(Fe) to form the composite catalyst. The results of photocatalytic degradation experiment confirm that CQDs/MIL101(Fe) possess excellent photocatalytic activity and stability for TC degradation. The CM100 with optimum CQDs-to-MIL101(Fe) rate shows the highest photocatalytic activity with TC degradation efficiency up to 81%. The reaction rate constant for CM100 is 0.01177 min⁻¹, which is 5.8 times as high as that of pure MIL101(Fe). The results of transient photocurrent response and electrochemical impedance indicate that the improvement of photocatalytic performance of the CQDs/MIL101(Fe) composites is mainly due to the introduction of CQDs, which greatly promotes the separation of photo-generated electron-hole pairs. The result of radical trapping experiment confirms that superoxide radical is the main active species in photocatalytic reaction, followed by photo-generated holes.

Keywords: Carbon quantum dots; MIL101(Fe); Photocatalyst; Tetracycline; Photocatalytic mechanism

1. Introduction
Tetracycline (TC) is an important antibiotic, which has been widely used in the treatment of human and animal infection [1]. However, owing to abuse of tetracycline, the drug residues have been entered the environment through various ways. Up to now, antibiotics and their metabolites have been detected in surface water, groundwater and drinking water [1,2], which will lead to increasing antibiotic resistance of potential bacteria and consequent threat to human health [3]. In order to solve these problems, a variety of strategies, such as adsorption [4,5], microbial degradation [6], membrane separation [7], electrochemical oxidation [8], piezocatalysis [9–13], and photocatalytic oxidation [14] have been developed to remove antibiotics from environment or wastewater. Among these methods, photocatalysis technology is to stimulate semiconductors to generate photoinduced charges through light energy and then photoproduced charges react with H₂O and O₂ in solution to produce \(\cdot \text{O}_2^−, \cdot \text{OH} \) and other active species for the degradation of pollutants [15]. It is considered as a desirable method for degradation of organic pollutants due to its...
low cost, high efficiency, no secondary pollution [16–20]. Of course, designing and synthesizing a stable and efficient photocatalyst is the core of photocatalytic degradation of organic pollutants (such as TC) in water.

Metal organic frameworks (MOFs) have large specific surface area, high porosity and adjustable pore structure, so they are widely applied in catalytic synthesis [21], adsorption [22], drug delivery [23], gas separation and capture [24,25], chemical sensing [26], photocatalysis [27], and so on. In recent years, the research on photocatalytic degradation of organic pollutants by using MOFs as photocatalyst has attracted extensive interests [28–31]. Among many MOFs, Fe based MOFs (Fe-MOFs) has the advantages of high photocatalytic activity for removal of TC under visible-light irradiation. This work provided an idea for preparing high-efficient and stable MOF-based composite catalysts.

2. Material and methods

2.1. Materials

Citric acid, urea, terephthalic acid, ferric chloride hexahydrate, N,N-dimethylformamide, Ascorbic acid, 2-propanol and disodium ethylenediamine tetra-acetic acid are all in analytic grade and was purchased from Sinopharm Chemical Reagent Co., Ltd., (Shanghai, China).

2.2. Preparation of CQDs/MIL101(Fe)

The synthetic route of CQDs/MIL101(Fe) is shown in Fig. 1. Firstly, CQDs solution was prepared refers to the method reported in literature [44]. In brief, citric acid (5 g) and urea (1 g) were added into 25 mL of ultrapure water and stirred to be dissolved fully. Then the mixture was transferred into a 50 mL autoclave and heated at 180°C for 5 h in an oven. After reaction, the dark brown product was centrifuged at 8,000 rad/min for 5 min to remove large particles, and the CQDs solution was obtained. Subsequently, terephthalic acid (0.412 g) and FeCl3·6H2O (1.35 g) was added into 30 mL of N,N-dimethylformamide and stirred magnetically for 30 min. A certain amount of as-prepared CQDs solution was added to above solution and stirred for 30 min. Then the mixture was transferred into an autoclave and heated at 110°C for 20 h in an oven. After cooling to room temperature, the product was washed with deionized water and ethanol for several times, dried at 60°C for 12 h in a vacuum oven and ground to obtain CQDs/MIL101(Fe) composite. The CQDs/MIL101(Fe) with different CQDs contents, prepared by adding 25, 50, 100 and 150 μL of carbon quantum dot solutions, are designated as CM25, CM50, CM100 and CM150, respectively.

For comparison, MIL101(Fe) was synthesized with the same method as CQDs/MIL101(Fe) composite without the addition of CQDs solution.

2.3. Characterization of the photocatalyst

The crystal phase was detected by Empyrean X-ray diffractometer with Cu and Ka as radiation sources at a scanning speed of 7°/min. The morphology and micro structure of the samples were observed by a FEI-quanta 200 scanning electron microscope (SEM) and a FEI-Tecnai F20 transmission electron microscope (TEM). The element composition of the samples was determined by energy dispersive spectrometer (EDS). The infrared spectra of the samples were recorded by Cary 630 Fourier transform infrared (FT-IR) spectrometer. Raman spectra were performed on an LabRAM HR Evolution Raman spectrometer with a 532 nm He-Ne laser.
for excitation. The photoluminescence (PL) spectra of the samples were measured at the excitation wavelength of 446 nm with a RF-530PC photoluminescence spectrometer. UV-vis spectra were recorded by an FTS-165 UV-vis spectrophotometer with BaSO₄ as the reference. CHIQ660D electrochemical workstation was used to test the electrochemical performance of the photocatalysts. Photocurrent and electrochemical impedance spectroscopy (EIS) were recorded by using an alternating voltage of 5 mV amplitude in the frequency range of 105 Hz to 10⁻² Hz in 0.5 M Na₂SO₄ solution.

2.4. Photocatalytic performance test

The photocatalytic performance of the prepared catalyst was evaluated by the photocatalytic degradation of tetracycline (TC) in water under visible-light irradiation. 300 W xenon lamp with 420 nm cut-off filter was used as the light source, and the schematic diagram of experimental device is shown in Fig. S1. In a typical test, 20 mg of photocatalysts was added to 100 mL of TC aqueous solution with the initial concentration of 10 mg/L and initial pH of 6.8, stirred in the darkness for 30 min to ensure that the adsorption/desorption equilibrium was reached, then the TC solution was exposed to xenon lamp and stirred at a speed of 500 rpm for photocatalytic reaction. At 20 min intervals, 4 mL suspension were taken out and centrifuged to remove the photocatalysts. The concentration of TC was measured by a UV-vis spectrophotometer at the wavelength of 357 nm. The degradation efficiency of TC was calculated according to Eq. (1).

\[
\text{Degradation rate(\%)} = 1 - \left(\frac{C}{C_0} \right) \times 100\% \quad (1)
\]

where C represents the concentration of TC at a certain reaction time, and C₀ is the initial concentration of TC.

2.5. Cycle experiment of photocatalysts

The test procedure of photocatalytic reaction in cycle experiment are the same as that in Section 2.4 – Photocatalytic performance test. After the first photocatalytic reaction, photocatalysts were collected by centrifugation, washed with deionized water and absolute ethanol alternately, then dried at 60°C for the next reuse.

2.6. Active species capture experiment

Ascorbic acid (VC), 2-propanol (IPA) and disodium ethylenediamine tetra-acetic acid (EDTA-2Na) were added to TC solution to capture superoxide radical (·O₂⁻), hydroxyl radical (·OH) and photo-induced hole (h⁺), respectively. The concentration of capture agent is 1.0 mmol/L. In the presence of scavengers, the photocatalytic degradation of TC was conducted with the same method as that in Section 2.4.

3. Results and discussion

3.1. Characterization

Fig. 2a gives the FT-IR spectrum of MIL101(Fe) and as-prepared composites. In FT-IR spectrum of MIL101(Fe), the peak appeared at 750 cm⁻¹ is attributed to the C–H bond in benzene ring. The peaks at 1,020; 1,396 and 1,583 cm⁻¹ correspond to carboxyl bond. The peak at 1,680 cm⁻¹ originates from C=O in the carboxyl group [42]. The broad and weak peak at 3,420 cm⁻¹ is assigned to the stretching vibration of –OH adsorbed on MIL101(Fe), which agree with previous report [48]. Compared with MIL101(Fe), the absorption peaks at 750; 1,020; 1,396 and 1,583 cm⁻¹ exhibit no variation. Whereas the absorption
peak at 3,420 cm\(^{-1}\) become slightly intensified, indicating the existence of –OH from CQDs located on the surface of MIL101(Fe). The Raman spectra of CM100 was also measured and shown in Fig. S2. Two prominent peaks at 1,446 and 1,612 cm\(^{-1}\) can be clearly observed and corresponded to G band and D band of carbon, respectively [44,45], which further proves the existence of CQDs.

The morphologies of MIL101(Fe) and CQDs/MIL101(Fe) were observed by SEM and TEM. As can be seen from Fig. 3a, MIL101(Fe) presents an octahedron with average particle size of about 500 nm. Fig. 3b shows that CQDs/MIL101(Fe) exhibits similar shape with pure CQDs/MIL101(Fe), suggesting that the introduction of CQDs did not change the morphology of MIL101(Fe). It can be clearly found from TEM image of CQDs/MIL101(Fe) (Fig. 3c) that the surface of MIL101(Fe) is wrapped with CQDs nanoparticles, indicating that the CQDs are successfully anchored on the surface of MIL101(Fe). In the HRTEM image of CQDs/MIL101(Fe) (Fig. 3d), lattice stripes of CQDs with spacing of 0.256 nm can be observed [44], which further confirms that CQDs have been loaded on the surface of MIL101(Fe).

3.2. Photocatalytic performance

The photocatalytic performance of the prepared samples was evaluated by photodegradation of TC. As presented in Fig. 4a, MIL101(Fe) has good adsorption but poor photocatalytic effect toward TC. Within 120 min, the removal efficiency of TC is 44.7%. Compared with MIL101(Fe), CQDs/MIL101(Fe) shows decreased adsorption efficiency to TC, which may be because the loading of CQDs reduced the specific surface area of MIL101(Fe) to some extent. However, the degradation efficiency of TC under photocatalysis of CQDs/MIL101(Fe) was substantially improved. Among the three composites prepared by introducing various amount of CQDs solution, CM100 composite exhibits optimal photocatalytic activity with TC degradation efficiency of 81%, which is because CQDs can promote the separation of photogenerated electron–hole pairs. This is confirmed by the results from the transient photoelectric response and electrochemical impedance (shown in Fig. 6). Nevertheless, introduction of excess CQDs leads to the decrease in photocatalytic activity of CQDs/MIL101(Fe), which is because superfluous CQDs prevent the light absorption and shield the active sites of CQDs/MIL101(Fe) [43]. To further testify the degradation of TC, the UV-Vis spectra of photocatalytic degradation of TC was shown in Fig. S3. Furthermore, the UV-Vis spectra of photocatalytic degradation of TC over CM100 was shown in Fig. S3. In addition, the effect of pH value on photocatalytic degradation of TC was investigated. As shown in Fig. S4, the CM100 photocatalyst exhibited...
excellent degradation efficiency for TC at pH range of 6.0–8.0. Under condition of pH ≤ 5.0 or pH ≥ 9.0, the degradation efficiency of TC was both low. This is perhaps because MIL-101(Fe) is not resistant to acid and alkali [49,50].

Generally, photocatalytic degradation rate of organic pollutant can be described by first-order reaction kinetic model shown in Eq. (2):

\[
-\ln \left(\frac{C}{C_0} \right) = Kt
\]

where \(K \) represents the degradation rate constant, and \(t \) is the illumination time.

Fig. 4b is the kinetic curve of TC degradation. According to the slope of kinetic curve, the degradation rate constant is calculated to be 0.00203, 0.00375, 0.00513, 0.01177 and 0.0031 min\(^{-1}\) for MIL101(Fe), CM25, CM50, CM100 and CM150, respectively. Evidently, the catalytic reaction rate constant for CM100 composite is the largest, which is 5.8 times as high as that of MIL101(Fe).

The stability of the prepared photocatalysts were judged by the cyclic utilization of CM100 for TC degradation. As depicted in Fig. 4c, after three rounds of reuse, the photocatalytic efficiency of CM100 for TC degradation remained at 75.8%, only reduced by 5%, which indicated that CM100 composite photocatalyst has excellent stability. Fig. 4b reveals that there is no significant change in the XRD pattern of CM100 before and after recycling. This indicates that the structure of the composite catalyst does not change during the photocatalytic reaction, which further confirmed the stability of CM100.

3.3. Optical properties and charge separation

The UV-Vis spectra of MIL101(Fe) and CQDs/MIL101(Fe) are given in Fig. 5. The absorption edge of CQDs/MIL101(Fe) slightly redshifts compared to MIL101(Fe). The band gap of semiconductor can be estimated by Tauc formula shown in Eq. (3) [51].

\[
\alpha hv = A (hv - E_g)^{1/2}
\]

where \(\alpha \) is the light absorption coefficient, \(h \) is the Planck constant, \(v \) is the photon frequency, \(A \) is a constant, \(E_g \) is band gap and \(n \) is a constant that is depended on transition performance of the semiconductor. Because MIL101(Fe) is a direct semiconductor, \(n = 1 \). The Tauc plots of MIL101(Fe) and CQDs/MIL101(Fe) are shown in Fig. 5b. According to the slope of the curve in Fig. 5b, the band gap of CQDs/MIL101(Fe) are all 2.67 eV, which indicates that the incorporation of CQDs has no significant effect on the band gap of MIL101(Fe). Mott Schottky curve was determined to estimate the LUMO potential of CM100. As illustrated in Fig. 4c, the flat-band potential (Efb) of MIL101(Fe) is –0.78 V (vs. SCE), which is equivalent to –0.54 V (vs. NHE). Moreover, positive slope indicates that the composite has the characteristics similar with n-type semiconductor [52]. As for n-type semiconductor, ECB (or LUMO potential) is
approximately 0.10 V less than the Efb. Therefore, the LUMO potential of MIL101(Fe) is \(-0.64\) eV. According to Eq. (4) [53], the HOMO potential of CM100 is calculated to be 1.99 eV.

\[E_g = E_{\text{VB}} - E_{\text{CB}} \]

(4)

Fig. 5d presents the PL spectra of MIL101(Fe) and CM100. The PL emission peaks of MIL101(Fe) and CM100 are all located at 540–550 nm. However, compared with MIL101(Fe), the emission peaks intensity of composite CM100 are obviously weakened. This means that CQDs loaded on the surface of MIL101(Fe) can effectively inhibit the recombination of electron–hole pairs [54].

In order to investigate the migration ability of the charge carriers for CQDs/MIL101(Fe), the transient photoelectric response and electrochemical impedance were conducted. As shown in Fig. 6a, CM100 exhibits significantly enhanced photocurrent intensity compared with MIL101(Fe), which verifies more efficient separation of photoinduced charge
carriers in CM100 [55]. Furthermore, the electrochemical impedance spectra (Fig. 6b) shows that the Nyquist arc radius of CM100 is considerably smaller than that of MIL101(Fe), meaning that the CM100 has lower resistance in electron migration, that is, more efficient separation for photoproduced charge carriers [56]. In a word, The CQDs anchored on the surface of MIL101(Fe) greatly boosts the separation of photogenerated electron-hole pairs, which results in enhanced photocatalytic activity of CM100.

3.4. Photocatalytic reaction mechanism

In order to explicate the photocatalytic mechanism of CQDs/MIL101(Fe) for degradation of TC, the active species in photocatalytic reaction were identified by free radical trapping tests. Isopropanol (IPA), ascorbic acid (VC) and ethylenediamine tetraacetic acid (EDTA) were applied to capture hydroxyl radical (‘OH), superoxide radical (‘O2) and photoduced holes (h+), respectively. As shown in Fig. 7a, the degradation efficiency of TC does not decrease obviously with the introduction of IPA, indicating that few ‘OH play a role in photocatalytic process. When VC and EDTA were added to TC solution, the photocatalytic efficiency decreased significantly from 81% to 26% and 54%, respectively, which confirms that the main active species in photocatalytic reaction is ‘O2, followed by h+.

Fig. 7. (a) The results of active species trapping experiment for CM100 and (b) possible photocatalytic mechanism of CQDs/MIL101(Fe) for TC degradation.

Based on the trapping experimental result and CB and VB position, a possible photocatalytic mechanism of CQDs/MIL101(Fe) for TC degradation is proposed. As illustrated in Fig. 7b, owing to its narrow bandgap, MIL101(Fe) was excited under irradiation of visible-light to generate electrons and holes. Since CQDs acts as electron acceptors, the photogenerated electrons rapidly migrate from the LUMO of MIL101(Fe) to the surface of CQDs, which is conducive to inhibiting the recombination of the photoinduced electron-hole pairs. Since LUMO potential (–0.64 eV) of MIL101(Fe) is more negative than redox potential of O2/O2 (–0.33 eV), the photoproduced electrons react with O2 to form plenty of ‘O2, and the generated ‘O2 oxidize TC. The holes remained in the HOMO of MIL101(Fe) directly participate in TC degradation to some extent. Nevertheless, ‘OH is difficult to be produced because the HOMO potential (1.99 eV) of MIL101(Fe) is more negative than the redox potential of H2O/H2O (2.4 eV), which has been verified by the result from radical trapping test.

4. Conclusions

The CQDs/MIL-101(Fe) was successfully synthesized by anchoring the CQDs on the surface of MIL101(Fe) via facile solvothermal method. In CQDs/MIL101(Fe) composite, CQDs function as local electron acceptor to effectively transfer photoinduced electrons from MIL101(Fe) and thus inhibits the recombination of the electron-hole pairs. CQDs/MIL101(Fe) exhibits dramatically enhanced photocatalytic activity in comparison with the pure MIL101(Fe). The photocatalytic activity is depended on content of CQDs in composite. The CM100, which was obtained by adding 100 μL CQDs solutions during preparation, shows the highest photocatalytic activity for TC degradation. Within 120 min, the removal of TC can reach up to 81%. Additionally, the result from radical trapping experimental testified that TC degradation is mainly attributed to superoxide radicals, followed by photoproduced holes.

Acknowledgements

This study is supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_3496).

References

Supplementary information:

Fig. S1. The schematic diagram of photocatalytic reaction device.

Fig. S2. The Raman spectra of CM100.

Fig. S3. UV-Vis spectra of photocatalytic degradation of TC over CM100.

Fig. S4. Effect of pH on photocatalytic degradation of TC over CM100.