Adsorption of SO$_4^{2-}$ on Li$_2$CO$_3$ crystal surfaces: experiments and first-principles calculation

Xin Liua,b,c, Yanfang Mab,c,d,*, Yongming Zhangb,c, Xiuping Dingb,c, Zhihong Zhangb,c

aUniversity of Chinese Academy of Sciences, Beijing 100190, China, email: liuxin192@mails.ucas.ac.cn (X. Liu)
bKey Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of the Sciences, Xining 810008, China, emails: mayanfang@isl.ac.cn (Y. Ma), yming@isl.ac.cn (Y. Zhang), dingxp@isl.ac.cn (X. Ding), zhangzh@isl.ac.cn (Z. Zhang)
cKey Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
dInovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

Received 11 December 2022; Accepted 10 June 2023

ABSTRACT

Salt lake brine is an important raw material for Li$_2$CO$_3$ preparation, however, the composition of salt lake brine is relatively complicated, and the coexistence of impurity ions affects the quality of Li$_2$CO$_3$ crystals. Especially, SO$_4^{2-}$ in brine can compete with CO$_3^{2-}$ to form ion pairs, which limits the nucleation of carbonate. Therefore, it is necessary to study the adsorption behavior of SO$_4^{2-}$ in brine on the surface of Li$_2$CO$_3$ crystals. In this paper, the effect of SO$_4^{2-}$/Li$^+$ ratio is studied by combining experiments and first-principles calculation. The results show that in the Li$_2$CO$_3$ crystallization system, SO$_4^{2-}$ interacts strongly with the crystal surface, which is regarded as chemical adsorption. And because of the SO$_4^{2-}$ is a soluble anion, its elution rate is about 50%. The adsorption of SO$_4^{2-}$ on the surface of Li$_2$CO$_3$ affects the morphology, particle size, and purity of the crystals. The governing equation is constructed by the change of the crystal specific surface area with the SO$_4^{2-}$/Li$^+$ ratio, which can effectively predict the crystal size and specific surface area with SO$_4^{2-}$ content. The first-principles calculation reveals the microscopic behavior of SO$_4^{2-}$ adsorption on the crystal surface from the molecular level that there is charge transfer between the O atoms of SO$_4^{2-}$ and the Li atoms on the crystal surface, and there is a strong interaction between them.

Keywords: Li$_2$CO$_3$; SO$_4^{2-}$; First-principles calculation; Surface adsorption

1. Introduction

Li$_2$CO$_3$ is commonly used as the raw material for the production of inorganic and organic lithium compounds due to its stability and simple form [1,2]. Li$_2$CO$_3$ is mainly extracted from lithium ore and salt lake brine as raw materials, and the reserves in liquid form reach 70%, becoming an important raw material for the preparation of Li$_2$CO$_3$ [3–5]. Li$_2$CO$_3$ products are usually obtained by crystallization of Na$_2$CO$_3$ and Li-rich brine. At present, Li$_2$CO$_3$ is widely used in industrial fields, especially in some high-tech fields where higher requirements are put forward for the purity, particle size and morphology of Li$_2$CO$_3$ products [6–8]. However, impurity ions such as Na$^+$, Mg$^{2+}$, Cl$^-$, K$^+$ and SO$_4^{2-}$ are contained in salt lake brine, which has a bad influence on the performance of high-purity Li$_2$CO$_3$ products, especially in the production and applications of lithium batteries, which greatly affects the electrochemical performance of the batteries [9–12]. Therefore, the impurity effect in the extraction process of Li$_2$CO$_3$ has become an important research direction.

* Corresponding author.
The effect of impurity ions was mainly reflected in the selective adsorption of impurity ions on the crystal surface, which changes the growth rate of the crystal surfaces; even the rapidly growing crystal surfaces may disappear as the finally exposed crystal surfaces determine the crystal morphology [13]. During crystallization, due to the presence of impurity ions in the liquid phase, the ions in solution may increase the supersaturation of the solution through salting out or by chemical interactions between ions, and the solubility of the crystal changes [14,15]. In the extraction process used for Li$_2$CO$_3$ although only low concentrations of SO$_4^{2-}$ and part of SO$_4^{2-}$ as soluble anions (such as Cl$^-$ and part of SO$_4^{2-}$) remain after washing with pure water [16], the residual SO$_4^{2-}$ can be concentrated in the subsequent evaporation and concentration process, leading to the precipitation of Li$_2$SO$_4$, which affects the yield of Li products [17]. Due to the shape of SO$_4^{2-}$, more than one O atom of SO$_4^{2-}$ could interact with Li$^+$ atoms on the surface of Li$_2$CO$_3$. Moreover, studies had found that SO$_4^{2-}$ can form ion pairs with Li$^+$ better than with Na$^+$ in solution, and the formation of such ion pairs largely limits the nucleation of carbonate [18].

Wei et al. [14] and Li et al. [19] reported that SO$_4^{2-}$ is mainly adsorbed on the crystal surface of Li$_2$CO$_3$ although 90% SO$_4^{2-}$ in the Li$_2$CO$_3$ crystals can be removed by recrystallization and a hydrothermal method. However, studies have shown that the formation of ion pairs among components of sulfate hemihydrate significantly changes the ability of Li$_2$CO$_3$ to form from aqueous solution [16,20]. At present, there are few studies on the effect of a low content of SO$_4^{2-}$ on Li$_2$CO$_3$ crystals.

This research was based on the Li$^+$, Na$^+/$/Cl$^-$, CO$_3^{2-}$/H$_2$O crystallization system, and the interaction between SO$_4^{2-}$ and the Li$_2$CO$_3$ crystal surface was calculated by first-principles calculation. Through experiments and theoretical calculation, the impurity effect of SO$_4^{2-}$ in the Li$_2$CO$_3$ crystallization process under different SO$_4^{2-}$/Li$^+$ ratios had been studied. The results can predict the influence rule of SO$_4^{2-}$/Li$^+$ on the size and morphology of Li$_2$CO$_3$ crystals under different SO$_4^{2-}$/Li$^+$ ratios, which is of guiding significance to improve the utilization rate of Li resources and the quality of Li$_2$CO$_3$ crystals obtained from salt lake brine.

2. Materials and methods

2.1. Materials

The raw materials used in this study are lithium chloride (LiCl), sodium carbonate (Na$_2$CO$_3$), and sodium sulfate (Na$_2$SO$_4$). All chemical reagents were analytically pure (≥99.0%). Deionized water (resistivity 18.25 mΩ·cm) was prepared using a water purification system (UPT-II-20L, Chengdu Ultrapure Technology Company Limited).

2.2. Experimental methods

After the deep impurity removal, SO$_4^{2-}$/Li$^+$ in Li-rich brine was about 0.5–1, so studied the influence of SO$_4^{2-}$ on Li$_2$CO$_3$ within the range of this ratio. The composition of brine is shown in Table 1. Li$_2$CO$_3$ crystals were prepared by reaction crystallization of an 18% LiCl solution and a 22% Na$_2$CO$_3$ solution in a crystallizer. Under the conditions of a water bath temperature of 80°C, and a specific amount of mother liquor (18% LiCl and 22% Na$_2$CO$_3$ saturated NaCl solution after preparation of the mother liquor) was added to the crystallizer for stirring and mixing. The stirring impeller is located in the middle of the mould guide barrel, and the speed is 700 r·min$^{-1}$. The LiCl solution and different concentrations of sulfate solution (Na$_2$SO$_4$ and Na$_2$CO$_3$ mixed solutions) are injected at 3.6 and 6 mL·min$^{-1}$ with a peristaltic pump, respectively. After addition, the reaction mixture was stirred for 30 min. The distilled water was heated to 80°C and the obtained solid was washed twice with three times distilled water and then dried. The experimental device is shown in Fig. 1. The SO$_4^{2-}$/Li$^+$ ratio conditions in the Li$_2$CO$_3$ reactive crystallization system was shown in Table 2. The systems incorporating SO$_4^{2-}$ are labeled as S0 (SO$_4^{2-}$/Li$^+$: 0), S1 (SO$_4^{2-}$/Li$^+$: 0.05), S2 (SO$_4^{2-}$/Li$^+$: 0.5), S3 (SO$_4^{2-}$/Li$^+$: 0.8), and S4 (SO$_4^{2-}$/Li$^+$: 1), respectively.

The contents of elements in the solid-phase products obtained from reactive crystallization were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) (Thermo Fisher ICP6500 DUO). The samples were analyzed by X-ray diffraction (XRD) (X’Pert Pro MPD), using Cu-Kα radiation (λ = 1.5406 Å). The particle size distribution and morphology of the samples were determined using a Malvern laser particle size analyzer (MS 3000) and a scanning electron microscope (Hitachi SU8010). The chemical composition and atomic content of the solid surface were analyzed by X-ray photoelectron spectroscopy (XPS) (Thermo Scientific K-Alpha). Using a full spectrum scan with a passing energy of 100 eV and a step size of 1 eV. The specific surface area of the solids is analyzed using an automatic specific surface and pore size distribution analyzer (Autosorb-iQ).

2.3. Computational methods

The ideal Li$_2$CO$_3$ crystal is monoclinic (space group C2/c). In this study, all the calculations are performed in the framework of DFT with the Projector Augmented Wave method (PAW), as implemented in VASP [21]. The generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof was selected for the exchange-correlation potential (GGA-PBE) [22]. The cut-off energy of the plane wave is set to 400 eV. In the iterative solution of the Kohn-Sham equation, the convergence criterion is set to 10$^{-6}$ eV. The lattice constants of Li$_2$CO$_3$ crystals are $a = 8.317$ Å,

![Table 1 Composition of lithium-rich brine system after deep de-impurity](image)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Content (mol·L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$^+$</td>
<td>4.73</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>4.66</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>4.91</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.18</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.39</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>2.71</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0.061-0.31</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>33.33</td>
</tr>
</tbody>
</table>
b = 4.957 Å, c = 6.046 Å, \(\beta = 114.617^\circ \), which are consistent with other studies [23]. A \(2 \times 3 \times 2 \) Li\(_2\)CO\(_3\) supercell model was constructed to calculate the surface energy of the crystal. The surface atoms were relaxed and the bottom atoms were fixed. In order to avoid the interaction between adjacent layers, the 15 Å thick vacuum layer was introduced in the Z-direction. Brillouin region integration is performed using a \(2 \times 2 \times 1 \) K-point grid. The valence electrons and their orbitals involved in calculation of the system are: Li: 2s\(^1\), O: 2s\(^2\)2p\(^4\), C: 2s\(^2\)2p\(^2\), S: 3s\(^2\)3p\(^4\).

The surface energy can provide important information on the stability of the surface structure and is an important physical quantity for studying the material surface, and calculating the surface energy of each surface of the crystal to determine the structure with the lowest surface energy and the most stable crystal plane orientation. The crystal surface energy (J·m\(^{-2}\)) under dry conditions is defined by Eq. (1) [24,25].

\[
E_{\text{surf}} = \frac{E_{\text{slab}} - nE_{\text{bulk}}}{2A}
\]

where \(E_{\text{slab}} \) refers to the total energy of the surface, \(E_{\text{bulk}} \) refers to the energy of bulk Li\(_2\)CO\(_3\) calculated by optimizing the bulk structure, \(n \) refers to the total number of effective atoms in the crystal cell model, and \(A \) refers to the optimized area of the crystal face exposed by cutting the crystal.

The adsorption energy of SO\(_4^{2-}\) and the Li\(_2\)CO\(_3\) crystal surface can represent the relative strength of intermolecular interactions [26]. The adsorption intensity of SO\(_4^{2-}\) on the crystal surface has been investigated, and the adsorption energy (eV) is defined as shown in Eq. (2) [27,28].

\[
E_{\text{ads}} = E_{\text{surface} + \text{absorbate}} - \left(E_{\text{surface}} + E_{\text{absorbate}} \right)
\]

where \(E_{\text{ads}} \) refers to the adsorption energy, \(E_{\text{surface} + \text{absorbate}} \) refers to the total energy absorbed by the adsorbed material on the crystal surface, \(E_{\text{surface}} \) refers to the surface energy of the crystal, and \(E_{\text{absorbate}} \) refers to the energy of absorbing material. The more negative the \(E_{\text{ads}} \) value, the stronger the interaction, indicating that SO\(_4^{2-}\) is more easily adsorbed on the Li\(_2\)CO\(_3\) surface [29].

3. Results and discussion

3.1. Influence of SO\(_4^{2-}\) on Li\(_2\)CO\(_3\) crystals

This paper has studied the incorporation of SO\(_4^{2-}\) with different SO\(_4^{2-}/\text{Li}^+\) ratios in the reactive crystallization process of Li\(_2\)CO\(_3\) to explore the influence of SO\(_4^{2-}\) ion on Li\(_2\)CO\(_3\) crystals. Fig. 2 shows the XRD patterns of Li\(_2\)CO\(_3\) crystals obtained at different SO\(_4^{2-}/\text{Li}^+\) ratios. The XRD diffraction peaks of the samples were basically consistent with the standard pattern (PDF 98-010-0324) [2], which shows that the structures of the Li\(_2\)CO\(_3\) crystals were not changed by the ion effect after adding a certain proportion of sulfate. Due to the low content of SO\(_4^{2-}\), it was not detected by XRD analysis.

The content of SO\(_4^{2-}\) in the Li\(_2\)CO\(_3\) samples that crystallized under different SO\(_4^{2-}/\text{Li}^+\) ratios was analyzed by ICP-OES, and the elution rate of SO\(_4^{2-}\) and the purity change of the sample before and after washing were analyzed, and...
the results are shown in Fig. 3. The results indicate that after washing twice with distilled water, the elution rate of SO$_4^{2-}$ in the crystal is 38.5%–75.5% (Fig. 3a), and the purity of Li$_2$CO$_3$ crystals increased by 87.3%–19.5%, due to the elution rate of impurity ions increase (Fig. 3b). The larger the SO$_4^{2-}$/Li$^+$ ratio, the lower the elution rate of SO$_4^{2-}$ and leads to the increase in the rate of crystal purity is lower, which indicates that when the content of SO$_4^{2-}$ is high, leads to interact ions between SO$_4^{2-}$ and the crystal surface easily. The SO$_4^{2-}$ in Li$_2$CO$_3$ crystals is easy to elute because of SO$_4^{2-}$ is a soluble anion [16], and the solubility of Li$_2$SO$_4$ in water increases on increasing the temperature. This is contrary to the solubility of Li$_2$CO$_3$, therefore, after washing the solid sample with distilled water at 80°C, about 50% SO$_4^{2-}$ in Li$_2$CO$_3$ crystals can be removed.

As shown in Fig. 4, the crystal size of Li$_2$CO$_3$ increases on increasing the SO$_4^{2-}$/Li$^+$ ratio, and the particle size distribution gradually became wider. The specific surface area of the crystal decreases with an increase of the particle size (as shown in Fig. 5). With an increase in the amount of SO$_4^{2-}$ in the process of Li$_2$CO$_3$ reaction crystallization, the change in the specific surface area of Li$_2$CO$_3$ crystals also explains why the purity of Li$_2$CO$_3$ crystals before washing increases with an increase of the SO$_4^{2-}$/Li$^+$ ratio (Fig. 3b). When the SO$_4^{2-}$/Li$^+$ ratio was smaller, the purity of the Li$_2$CO$_3$ crystals before washing is lower, because the large specific surface area of the crystal, which provides favorable conditions for impurity adsorption. However, the higher impurity elution rate indicates that the impurity ions were mainly coated on the crystal surface in the form of soluble solids, but they did not participate in strong chemical reactions with the ions on the crystal surface. As the SO$_4^{2-}$/Li$^+$ ratios increase to 0.8–1, the specific surface areas of the crystal gradually decrease, and the adsorption amount of impurities increases. However, there is a strong interaction between SO$_4^{2-}$ and the crystal surface, which leads to a decrease in the elution rate of the SO$_4^{2-}$.

In order to explore the adsorption behavior of SO$_4^{2-}$ on the surface of Li$_2$CO$_3$ crystals, XPS was used to analyze the surface composition of the Li$_2$CO$_3$ samples under different SO$_4^{2-}$/Li$^+$ conditions. Fig. 6 shows the XPS spectrum of Li$_2$CO$_3$. According to the analysis in Fig. 6a, O 1s was the most significant in the vicinity of 531.34 eV in the four groups of samples, followed by C 1s near 289.28 eV, indicated that the main composition of the crystal surface of Li$_2$CO$_3$ doped with SO$_4^{2-}$ was still composed of CO$_3^{2-}$. As shown in Fig. 6b, with an increase in the SO$_4^{2-}$/Li$^+$, the peak value of S 2p increases significantly, which shows that after SO$_4^{2-}$ is incorporated into the crystals, the sulfur on the surface of the crystals has increased to a certain degree.

The data in Table 3 shows the composition and SO$_4^{2-}$ concentration on the surface of Li$_2$CO$_3$ crystals by XPS analysis, and the surface concentration of SO$_4^{2-}$ was calculated from Eq. (3) [19].
\[\rho_{SO_4^2-} = \frac{x_S \times M(SO_4^{2-})}{x_S \times M(Li_2CO_3) + x_C \times M(Li_2SO_4)} \times 100\% \] (3)

where \(\rho_{SO_4^2-} \) represents the molar concentration of \(SO_4^{2-} \), \(x_S \) and \(x_C \) respectively represents the atomic fractions of \(S \) and \(C \) on the crystal surface, and \(M(SO_4^{2-}) \), \(M(Li_2CO_3) \), \(M(Li_2SO_4) \) are the molar masses of \(SO_4^{2-} \), \(Li_2CO_3 \), and \(Li_2SO_4 \), respectively.

It can be seen from Table 3 that the content of \(SO_4^{2-} \) on the crystal surface increases gradually, and the C/S ratio decreases from 89.71 to 29.11, indicating that the higher the \(SO_4^{2-} \) content, the stronger is the adsorption strength of \(SO_4^{2-} \) on the surface of the \(Li_2CO_3 \) crystals.

As shown in Fig. 7, the effect of \(SO_4^{2-} \) on the morphology of \(Li_2CO_3 \) crystals after washing was investigated. When the \(SO_4^{2-}/Li^+ \) ratio was 0.05–0.5 (Fig. 7S1–S2), \(SO_4^{2-} \) had minimal effect on the crystal morphology of \(Li_2CO_3 \). The crystal is a long prismatic structure, and the crystal surface is smooth. When the \(SO_4^{2-}/Li^+ \) ratio was 0.8–1 (Fig. 7S3–S4), the degree of crystal agglomeration increases and there were small particles embedded in the crystal, and many irregular holes appear on the \(Li_2CO_3 \) surface, which easily led to impurities into the pores, resulting in the decrease of impurity ion elution rate. The reason for \(SO_4^{2-} \) causing crystal surface defects is that \(SO_4^{2-} \) is enriched on the crystal surface, which changes the properties of the crystal surface layer and prevents the growth of some lattice surfaces of the crystal, while the irregular holes on the crystal surface make it easier for impurity ions to enter and difficult to remove. Defects on the crystal growth surface often provide nucleation sites for branches. The embedding and agglomeration of crystal particles usually occurs in the competitive process between aggregation and crystal growth [30], and the small particles on the crystal surface grow gradually after secondary nucleation on the large crystal surface.

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Relative content (%)</th>
<th>(SO_4^{2-}) on surface (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>S1</td>
<td>29.08</td>
<td>0.31</td>
</tr>
<tr>
<td>S2</td>
<td>30.04</td>
<td>0.47</td>
</tr>
<tr>
<td>S3</td>
<td>27.32</td>
<td>0.56</td>
</tr>
<tr>
<td>S4</td>
<td>27.60</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Fig. 6. X-ray photoelectron spectra of \(Li_2CO_3 \) crystals: (a) full spectrum and (b) the \(S 2p \) spectrum.

Fig. 7. Scanning electron microscopy images of \(Li_2CO_3 \) crystals at different \(SO_4^{2-}/Li^+ \) ratios conditions: S0: \(SO_4^{2-}/Li^+ \): 0, S1: \(SO_4^{2-}/Li^+ \): 0.05, S2: \(SO_4^{2-}/Li^+ \): 0.5, S3: \(SO_4^{2-}/Li^+ \): 0.8, and S4: \(SO_4^{2-}/Li^+ \): 1.
3.2 First-principles calculation study of the adsorption of SO$_4^{2-}$ on the surface of Li$_2$CO$_3$

The experimental results shown that SO$_4^{2-}$ is mainly adsorbed on the crystal surface, and the adsorption of impurity ions on the crystal surface has been further studied from the atomic point of view by first-principles calculation. Firstly, the surface energy of each low-index crystal surface in the XRD diagram (as shown in Fig. 2) of the Li$_2$CO$_3$ crystal was calculated to analyze the crystal surface stability. Surface energy is a measure of the destruction of chemical bonds that occurs when a surface is formed. The lower the surface energy, the stronger the thermodynamic stability of the surface and the worse the surface activity [31–33]. Fig. 8 shows the surface energy of each crystal surface structure. As shown in Fig. 8, the surface energy of each crystal surface is as follows: (200) > (110) > (111) > (10$ar{1}$) > (001). In this paper, selected the most stable surfaces (001), (10$ar{1}$), (111) with the lowest surface energies to study the adsorption of SO$_4^{2-}$ on the surface of Li$_2$CO$_3$ crystal.

SO$_4^{2-}$ has two uncoordinated oxygen atoms, and due to its shape, more than one sulfate O atom can interact with Li atoms on the surface of Li$_2$CO$_3$ [18]. This study only discusses the adsorption of the Li terminating surfaces (001), (10$ar{1}$), (111). Fig. 9 shows the stable adsorption configuration of SO$_4^{2-}$ on each surface of the Li$_2$CO$_3$ crystals. The most stable adsorption structure was determined by calculating the adsorption energy of each adsorption structure, and the results are shown in Table 4. A negative value for the adsorption energy means that an exothermic reaction has occurred and the adsorption system is stable; a positive value for the adsorption energy means that an endothermic reaction has occurred and the adsorption system is unstable [34,35]. The adsorption energy results shown that when SO$_4^{2-}$ was adsorbed on the (111) surface of the crystals, the adsorption energy was –13.471 eV, and the absolute value of the adsorption energy was higher than that of the (001) and (10$ar{1}$) surfaces, which indicates that the adsorption configuration is most stable when adsorption occurs on the (111) surface. Therefore, the results shown that the surface atom density of each crystal surface is different, which affects the strength of the interaction between SO$_4^{2-}$ with the Li$_2$CO$_3$ surface.

The differential charge density can be used to describe the charge distribution, the charge transfer and the bond formation of each atom in the crystal [36,37]. Fig. 10 shows the differential charge density distribution of the SO$_4^{2-}$ stable adsorption model on each surface of Li$_2$CO$_3$. In Fig. 10, yellow represents a charge increase and blue represents a charge decrease. It can be seen from Figs. 9 and 10 that during the adsorption process, the O atoms of SO$_4^{2-}$ approach the surface of the Li$_2$CO$_3$ crystals and form an ion pair with the Li atoms on the crystal surface. The results shown that more electrons were missing from the Li atom layers of the crystal surface of Li$_2$CO$_3$, and the electrons were enriched on the O atoms of SO$_4^{2-}$. The O atoms of SO$_4^{2-}$ interact with the Li atoms on the crystal surface, and there was charge transfer between the crystal surface and the adsorbed molecule, which indicated that this adsorption mode is chemical adsorption.

Density of state is defined as the number of states that electrons may appear in for a unit energy interval. By analyzing the density of states of a system, we can further understand the mechanism of interaction between SO$_4^{2-}$ and surface atoms [38]. In order to understand the electronic structure changes of SO$_4^{2-}$ on different Li$_2$CO$_3$ surfaces, the density of states of SO$_4^{2-}$ adsorbed on different crystal surfaces were calculated, and the results are shown in Fig. 11, where the energy zero point is taken as the Fermi level. It can be seen from Fig. 11a that the density of states of un-adsorbed Li$_2$CO$_3$ was symmetric up and down, indicated that Li$_2$CO$_3$ is a non-magnetic insulator [18]. Compared with pure Li$_2$CO$_3$, a new peak of state density appears in the region close to the Fermi level after SO$_4^{2-}$ was adsorbed on the crystal surface, indicated that the adsorbent had higher density of state.

<table>
<thead>
<tr>
<th>Crystal surface</th>
<th>(001)</th>
<th>(10$ar{1}$)</th>
<th>(111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{ads} (eV)</td>
<td>–3.397</td>
<td>–3.693</td>
<td>–13.471</td>
</tr>
</tbody>
</table>

Table 4 Adsorption energies of SO$_4^{2-}$ on each surface of the Li$_2$CO$_3$ crystals

Fig. 8. Surface energy of each surface of the Li$_2$CO$_3$ crystals.

Fig. 9. Stable configurations of SO$_4^{2-}$ adsorbed on each surface of the Li$_2$CO$_3$ crystals: (a) the (001) surface, (b) the (10$ar{1}$) surface, and (c) the (111) surface.
reactivity. After \(\text{SO}_4^{2-} \) was adsorbed on the \(\text{Li}_2\text{CO}_3 \) (001) and \(\{10\overline{1}\} \) surfaces (Fig. 11b and c), the contribution of the O-2p and C-2s orbitals decreases significantly, and the density of the Li-2s orbital electron states increases near the Fermi level. After adsorption on the surface (111) (Fig. 11d), the O-2p, C-2p and Li-2s orbitals all had negative displacement, and the peak of electron state density decreases. The negative shifts of the atomic orbitals indicated that the Li atoms of the substrate crystal had a specific effect on \(\text{SO}_4^{2-} \). When the \(\text{SO}_4^{2-} \) was adsorbed on different crystal surfaces, the peak energy level changes and displacements of the orbital energy levels of C, O, and Li atoms indicated that the degree of interaction of \(\text{SO}_4^{2-} \) on different crystal planes is disparate. The variation and displacement of the density peak of the Li-2s orbital states proved that the presence of \(\text{SO}_4^{2-} \) has a significant effect on the electron distribution of Li atoms on the crystal surface.

4. Conclusion

The effects of \(\text{SO}_4^{2-} \) on the morphology, purity, particle size and specific surface area of \(\text{Li}_2\text{CO}_3 \) crystals at different \(\text{SO}_4^{2-}/\text{Li}^+ \) ratios has been studied experimentally and in combination with first-principles calculation to reveal
interactions between atoms in the Li$_2$CO$_3$ crystallization system from the molecular level, and to investigate the stable adsorption configuration and adsorption mechanism of SO$_4^{2–}$ on the Li$_2$CO$_3$ crystal surface.

- In the Li$_2$CO$_3$ reactive crystallization system, SO$_4^{2–}$ can compete with CO$_3^{2–}$ to form Li$_2$SO$_4$, resulting in the reduction of crystal purity, and because SO$_4^{2–}$ is a soluble anion, the elution rate is as high as 50%. With the SO$_4^{2–}$/Li$^+$ ratio increased, the crystal particle size increased, the specific surface area decreases, and the interaction between SO$_4^{2–}$ and the Li$_2$CO$_3$ surface is enhanced. The adsorption of SO$_4^{2–}$ on the surface of Li$_2$CO$_3$ crystals inhibits the growth of the crystal lattice surface. When the SO$_4^{2–}$/Li$^+$ ratio was 1, there were multiple irregular holes on the crystal surface, which was also an important reason for the decrease of the impurity elution rate in the crystals.

- The adsorption of SO$_4^{2–}$ on the (001), (10$ar{1}$) and (111) crystal surfaces of Li$_2$CO$_3$ has been studied in depth by first-principles calculations. The results shown that there was a strong charge transfer between the Li atom and the O atom of SO$_4^{2–}$ on each crystal surface, and the adsorption structure is relatively stable, which shown that the adsorption form of SO$_4^{2–}$ on the surface of Li$_2$CO$_3$ crystals was chemical adsorption. Through analysis of the adsorption energy and density of states diagrams, the adsorption intensity of SO$_4^{2–}$ on the surface of crystal (111) was stronger, indicated that in the actual crystal, SO$_4^{2–}$ adsorbed more easily on the (111) surface, which affects the growth of this lattice surface.

Acknowledgments

This work is supported by the Research and engineer- ing application of “cold crystallization–flotation” process of potassium chloride to improve the adaptability of car- nallite ore (grant number KFJ-STS-QYZD-2021-06-002), the Innovation Academy for Green Manufacture, Chinese Academy of Sciences (grant number IAGM2020C01).

References

[23] Y. Imamoto, J.W. Richardson Jr., N. Kour, S. Kohara, C.-K. Loong. Crystallization of (Li$_x$K$_{1-x}$)$_2$CO$_3$. (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis, J. Phys. Chem. Solids, 59 (1998) 363–376.

