Optimization of methylene blue and povidone-iodine adsorption conditions on activated biochar from sunflower husk pyrolysis

Beata Jabłońska,*, Maciej Gliniak

Abstract

Commercial activated carbons are mainly used in the adsorption process to remove pollutants from water and wastewater, however, due to their high costs, substitutes are currently being sought. Carbon materials obtained from activated biomass often show a high specific surface area (similar to that for activated carbons) due to a well-developed pore structure. In this study, activated biochar obtained from sunflower husks was tested for the adsorption of povidone-iodine (PVP-I) and methylene blue (MB). The biochar was prepared in the pyrolysis process (500°C) and chemically activated with K$_2$CO$_3$ at a temperature of 800°C. The activation affected greatly the structural properties of the biochar – the specific surface area increased from 32.5 to 740.5 m2/g, and the micropore and mesopore volume increased over 20 and 15 times, respectively. Also the iodine value changed from 89 to 495 mg/g. The physicochemical and granulometric properties as well as pH value of point of zero charge of the adsorbent surface were determined. The central composite design method was used to determine the optimal adsorption conditions (solution pH and adsorbent mass) in the initial concentration range 10–60 mg/dm3 for PVP-I and 30–250 mg/dm3 for MB. The maximum sorption capacity reaches 120 mg/g for MB and 5.6 mg/g for PVP-I. Sorption kinetics was investigated with use of several models. The times of half-saturation for these adsorbates are around 1 and 15 min, respectively. The detected Gibbs free energy change indicates the adsorption is spontaneous and thermodynamically favored. The adsorptive properties of the biochar obtained from waste sunflower husk are especially good for MB adsorption and acceptable with respect to PVP-I adsorption.

Keywords: Adsorption; Sunflower husk; Pyrolysis; Chemical activation; Povidone-iodine; Methylene blue

1. Introduction

In the last decade, thanks to significantly tightened regulations on pollutants from industry and agriculture, and new significantly improved technologies for water and wastewater treatment, Europe has taken a big step towards reducing emissions into the environment. Nevertheless, water pollution is still a serious problem, and its excessive exploitation, industrialization and climate change still affect its quality and availability [1]. It is estimated that more than 2 billion people worldwide still live in countries suffering from water scarcity, and a similar number of people rely on contaminated drinking water sources. This situation is also projected to worsen over the years due to further climate change and population growth [2]. Substances that get into surface and underground waters as a result of industrialization, as well as contact of waters with various wastes abandoned to the environment, are toxic and harmful to the environment. They cause many serious diseases in humans and animals. In recent years, drastic effects caused...
by surface water contamination have been observed especially in children [3]. Water sources can be contaminated with substances such as dyes, heavy metals, pharmaceuticals and more and more new substances undetectable so far. Research by the European Environment Agency (EEA) shows that the amount of personal protection products and pharmaceuticals released into the environment each year is approximately equal to the annual use of pesticides [4].

Analyzes of surface waters in Poland also confirm the constantly growing presence of dyes, pharmaceuticals and personal care products (PPCPs) in waters [5–7]. Products such as soaps, detergents, disinfectants and cosmetics are active sources of PPCPs. They are now more and more often detected in sewage treatment plants [8], surface and groundwater [9] and even in drinking water [10]. Due to the complex chemical structure, these compounds are not fully removed in the wastewater treatment process, and in the unchanged form or as intermediate metabolites, they may affect the pollution of surface and groundwaters [6,11].

In recent years, due to the COVID-19 epidemic, the use of cosmetic skin disinfectants by the population has increased in particular. One such agent is the polyvinylpyrrolidone-iodine complex, commercially named as povidone-iodine (PVP-I). It is a component of cosmetic and hygienic agents, as well as pharmaceuticals. It is often added to shampoos, mousses, washing powders and other cosmetics, and during the SARS-CoV-2 epidemic it was used in hospitals as a disinfectant to prevent infections of the skin or mucous membranes [12–14]. PVP-I is an agent with a broad spectrum of antimicrobial activity, for example, against bacteria, molds and some viruses [15,16], used, for example, in the treatment of skin and mucous membranes and in washing cosmetics, for example, for hand and room decontamination [13,17]. PVP-I is classified as idophors. It consists of iodine bound to a poly-(1-vinyl-2-pyrrolidone) carrier. It is commercially available in the form of solutions, ointments, gels and suppositories. It is characterized by high efficiency and durability. In the PVP-I solution, apart from the released free iodine, which has a disinfecting function, there is a lot of polyvinylpyrrolidone (PVP) polymer [18]. It is classified as a non-toxic polymer, but may contain unreacted residual amounts of the monomer used for polymerization, which is considered a carcinogen. In addition, synthetic polymers contained in personal care products (PCPs) and cosmetics can also be a source of environmental contamination with microplastics (MP). It has been estimated that a total of about 21.4 trillion MP particles may be released into the environment from PCPs and cosmetics annually [19]. Literature reports also cases of systemic absorption of significant amounts of PVP-I by organisms, regardless of the route of its administration, and toxic poisoning with it [20–22].

The problem of environmental pollution with dyes has also been known for a long time. Textile, chemical, paper, dyeing plants and tanneries are some of the industries that release highly colored wastewater [23]. Dyes, even in small amounts, can migrate over long distances from the source of pollution and color large volumes of water. It is estimated that about 10%–15% of the amount of dyes used in the dyeing process is discharged with sewage into the aquatic environment [24,25]. Synthetic dyes are permanent compounds, well soluble in water and poorly biodegradable [26]. Pollution of aquatic ecosystems with dyes, even at low concentrations (below 1 mg/dm³), reduces light penetration, negatively affecting the process of photosynthesis of aquatic plants, oxygen deficiency and the life of aquatic organisms [27]. Most of the dyes are also highly poisonous and mutagenic for living organisms depending on the exposure time and concentration of the dye [28]. For example, methylene blue (MB) is a dye belonging to the group of so-called azo. It is used in the textile, paper, cosmetics, plastic dyeing and food production industries. It is believed that this dye causes allergies, can cause irritation of the digestive tract, vomiting or diarrhea [26,29,30].

The uncontrolled discharge of large amounts of PPCPs and dyes into the environment poses a major challenge to existing water and wastewater treatment technologies. There are many methods to remove PPCPs and artificial dyes from water, such as nanofiltration [31], photocatalysis [32], adsorption on activated carbons [33,34], membrane processes [35], biological treatment [36], advanced oxidation processes [37] and others. Until now, for the removal of dyes and other pollutants from water, the most used adsorbents are carbon-based materials including activated carbon [38], carbon nanotubes [39,40] and graphene [41], and natural clays [42]. In the last few years, carbon materials (biochars) produced from plant biomass have gained great importance in removing pollutants from water. Biochars are environmentally friendly and inexpensive, which is why they have become a promising adsorbent for removing pollutants from water compared to expensive activated carbons obtained from synthesized fuel precursors such as hard coal, peat or brown coal. The use of activated carbons as carbon-based adsorbents significantly increases the cost, which limits their wide application. In contrast, biochars can be produced at low cost from agricultural waste and are widely available [43]. In addition, they are made of renewable raw materials, which gives greater possibilities for the production of adsorbents. They are heterogeneous materials formed as a result of high-temperature pyrolysis of biomass most often without access to oxygen, as well as hydrothermal carbonization, gasification or torrefaction [44]. Depending on the type of biomass from which they were obtained, synthesis conditions and methods of physical and chemical activation, biochars differ significantly in their physicochemical properties (e.g., specific surface area, porosity, elemental composition, etc.) [45]. The use of biochar to improve the physical properties and remediation of soil has been well documented in the literature, but not much is known about its use for drinking water treatment [46]. Currently, the use of biochar in water or wastewater treatment systems is limited. Although this material has similar properties to activated carbon, yet biochars are more heterogeneous materials obtained from different biomass. Different properties of biochars (pH, ionic strength, presence of organic matter and others) make sorption more complex [45]. The adsorption can be affected by several factors, like solution pH, adsorbent mass, adsorbate concentration, contact time, temperature and others. In the simplest approach, one-factor-at-a-time (OFAT) is considered, but more efficient approach is the response surface methodology (RSM), which detects interactions between several explanatory variables and one or more response variables. The most popular examples of RSM are factorial
designs, central composite designs (CCD) and Box–Behnken designs [47]. They differ with design of experimental points. Factorial design is simplest, but it requires many experiments, which may impossible to carry out. In contrast, CCD offers up to 5 levels per each explanatory variable with much fewer sampling points. Moreover, the response variable can be approximated with full second-order polynomial of all explanatory variables, which allows performing optimization. Box–Behnken design is similar, but it offers three levels per explanatory variable.

Sustainable management of water resources in the world requires the provision of sufficiently clean drinking water and innovative water treatment technologies, which involves the translation of existing knowledge into economical and practical water treatment systems, including biochar technologies. Therefore, the article presents the physicochemical properties of biochar obtained as a result of pyrolysis and chemical activation of sunflower husks against sorption of methylene blue and povidone-iodine. In the next stage, optimal conditions for sorption of these compounds from water are detected. A combination of CCD and OFAT was applied: a variant of CCD was used to detect the optimal conditions with respect to solution pH, adsorbent mass and adsorbate concentration, and the impact of temperature and contact time are investigated individually.

2. Methodology

2.1. Materials

Biochar obtained from sunflower husks by pyrolysis at 450°C–550°C was used in the research, more details can be found in [48–50]. This sample was designated BC1. The obtained biochar was chemically activated using K_2CO_3. Biochar was mixed with K_2CO_3 in a weight ratio of 1:3 (15 g of biochar and 45 g of K_2CO_3) and placed in a nickel boat in a horizontal tube furnace (PRW-S100×780/11 by Czylok Sp. z o.o., Jastrzębie Zdrój, Poland) in a nitrogen stream (5 dm3/min). The temperature in the furnace was increased at a rate of 10°C/min to an activation temperature of 800°C, which was maintained in the furnace for 2 h. After completion of the activation process, the samples were left in the reactor to reach room temperature. The material obtained was flooded with 5% HCl and left for 1 h. The sample was washed abundantly with hot distilled water until the chloride ions (Cl$^-$) disappeared from the effluent and dried at 105°C. This sample was designated BC2. Fig. 1 shows the prepared samples.

Methylene blue (MB) was purchased from Acros Reagents Poland. Povidone-iodine (PVP-I) was purchased from Pol-Aura Chemical Reagents (Poland). These substances occur locally in surface waters, underground waters, raw and treated sewage, and even in drinking water [51,52]. Selected chemical properties of MB and PVP-I are presented in Table 1.

2.2. Instrumentation

The content of basic elemental components (C, H, N, S) was determined on a LECO Tru/Spec CHN/S elemental analyzer. The specific surface area and porosity were determined using nitrogen adsorption at 77 K on a micrometrics ASAP 2020 analyzer. The granulometric analysis was performed on an Analysette 22 NeXT analyzer by Fritsch. The pH of the water was determined by the potentiometric method using an Elmetron CP-401 pH meter. MB and PVP-I concentrations were quantified on a Hach-Lange DR5000 UV-VIS spectrophotometer with an operational range of 190–1,100 nm.

2.3. Physical and chemical analysis

Biochars were characterized in terms of their physical and chemical properties, such as: pH, moisture, ignition losses, ash content, total carbon content, specific surface area, porosity, the content of elements such as: C, H, N, S and O, and granulometric properties.

Moisture content (W) in the tested samples was determined using the gravimetric method in accordance with the Polish standard PN-EN ISO 18134-2:2017-03 [54]. The measurement consisted in measuring the mass loss of a biochar weighing 1 ± 0.1 g. The sample was placed in a laboratory dryer heated to 105°C ± 5°C for 90 min; after the sample had cooled down, the mass measurement was performed.

The ash content in the tested samples was determined in accordance with the PN-ISO 1171 standard [55]. 1 ± 0.1 g of biochar was weighed into a ceramic boat and placed in a furnace at a temperature of 815°C ± 10°C for 90 min. After the sample had cooled down, the mass measurement was performed. The ash content was expressed on a wet basis as follows:

$$A = \left(\frac{100 - W}{100} \right) \times A_w$$ \hspace{1cm} (1)
The determination of the content of volatile matter was carried out in accordance with the PN-EN ISO 18123:2016-01 standard [57]. Determining the volatile and non-combustible components (ash), the samples were calcined to a constant mass in a muffle furnace of the FCF22S type (CZYLOK, Poland).

Liquid nitrogen.

The surface neutralization point (pH \(_{\text{zpc}}\)) of the adsorbent was determined using the constant addition method [59]. 50 mL of 0.01 M NaCl solution was prepared in glass bottles. The pH of the solution was then adjusted from 2 to 11 using solutions of 0.1 M HCl and 0.1 M NaOH. The bottles were sealed and left for 2 h. After this time, the initial pH of the solution was determined (pH\(_{\text{initial}}\)) and then 0.15 g of biochar was added to each bottle. The bottles were purged with nitrogen gas to drive CO\(_2\) out of the solution and sealed. The samples were then shaken for 24 h and set aside. After 72 h of equilibration at room temperature, the pH of the solution was measured in each bottle, which was designated as pH\(_{\text{final}}\). Based on the curve obtained from the difference of pH\(_{\text{initial}}\) and pH\(_{\text{final}}\) vs. pH\(_{\text{initial}}\), the pH\(_{\text{zpc}}\) value was determined. At the pH\(_{\text{zpc}}\) value, the charge of the surface adsorbent is zero. The surface of the adsorbent does not induce the release of either H\(^+\) or OH\(^-\) ions, nor does it acquire a charge as a result of acid–base dissociation [60].

2.5. Adsorption

BM or PVP-I of appropriate concentration, depending on particular stage of the studies, and volume of 0.1 dm\(^3\) of distilled water were introduced into conical flasks. The flasks were shaken on a rotary shaker for 10 h at 20°C, and then placed in a dark room for 14 h. After this time, the water from the conical flasks was decanted and centrifuged in a centrifuge (MWP-2 type) at 2500 rpm.

MB and PVP-I concentrations were quantified on a UV-VIS spectrophotometer. MB absorbance was measured at the maximum absorption wavelength \(\lambda = 662\) nm and PVP-I at the wavelength \(\lambda = 210\) nm. The spectrophotometric method was also used by other researchers, for example, [43] for MB and [61] for PVP-I. Each measurement was performed 3 times and an average was taken.

The removal efficiency was calculated as follows:

\[
E = \left(\frac{C_i - C_f}{C_i}\right) \times 100\%
\]

where \(C_i\) and \(C_f\) are the initial and final equilibrium concentrations of MB or PVP-I, respectively.

The adsorbed content of the sample, respectively, on a dry basis [56].
mass of BM or PVP-I per unit of adsorbent mass was determined using the following equation:

\[q = \left(\frac{C_i - C}{m} \right) \times V \]

where \(m \) (g) is the adsorbent mass and \(V \) is the solution volume (0.1 dm³).

2.6. Adsorption optimization

The central composite design (CCD) for three variables with \(a = 2^{3/4} \approx 1.68 \) was used in the research to determine the optimal conditions for MB and PVP-I removal. The independent variables were: the initial concentration of MB and PVP-I (\(C_i \)), adsorbent mass (\(m_i \)) per solution volume (0.1 dm³), and the initial pH of the solution (\(p \)). The response variable was the removal efficiency (\(E \)) given by Eq. (4). The ranges of the independent variables were 3–11 for \(p \), 0.1–0.6 g for \(m_i \) at solution volume 0.1 dm³, and 30–250 mg/dm³ for MB, 10–60 mg/dm³ for PVP-I concentrations. The response (percentage removal efficiency \(E \)) was approximated by a second-order polynomial with respect to normalized initial concentration, adsorbent mass and pH value (denoted as \(x_1, x_2, x_3 \), respectively) as follows:

\[\tilde{E} = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1 x_2 + a_5 x_1 x_3 + a_6 x_2 x_3 + a_7 x_1^2 + a_8 x_2^2 + a_9 x_3^2 \]

where \(\tilde{E} \) is the approximation of the removal efficiency, and \(a_0, a_1, \ldots, a_9 \) are coefficients to be determined by means of the least squares method using linear regression. In the analysis, all combinations of base functions 1, \(x_1 \), \(x_2 \), \(x_3 \) were used to find the best approximation with respect to the adjusted \(R^2 \), which penalizes the count of terms. Then the approximation with the highest value of adjusted \(R^2 \) was used for establishing the optimal conditions of adsorption.

2.7. Adsorption kinetics

The studies on MB and PVP-I adsorption kinetics were carried out with one-component aqueous solutions consisting of deionized water and the tested compound. The solution was 50 mL, to which 0.1 g of BC2 biochar was added. The kinetics studies for PVP-I were carried out under the same conditions, but for the initial concentration of PVP-I equal to 50 mg/dm³.

The following models were used for kinetic description: pseudo-first-order (PFO), pseudo-second-order (PSO), intraparticle diffusion (IPD) and particle diffusion with one term (PD1) [62]. If \(q_t \) represents the amount of adsorbed mass per adsorbent mass (in mg/g), \(t \) is time, and \(q_e \) the equilibrium value of \(q_t \) for \(t \rightarrow \infty \), then PFO and PSO models are described with the following equations:

\[q_t^{\text{PFO}} = q_e \left(1 - e^{-kt} \right) \]

(7)

\[q_t^{\text{PSO}} = \frac{q_e k t}{1 + q_e k t} \]

(8)

where \(k_1 \) and \(k_2 \) are constants related with adsorption rate. The times of half saturation in these models, when \(q = q/2 \), are as follows:

\[t_{1/2}^{\text{PFO}} = \frac{\ln 2}{k_1} \]

(9)

\[t_{1/2}^{\text{PSO}} = \frac{1}{k_2} \]

(10)

The diffusion model into a sphere of radius \(a \) is represented by the following equation:

\[q_t^{\text{PD1}} = q_t \left(1 - 6 \sum_{n=1}^{\infty} \frac{1}{n^a \pi^n} \exp \left(-n^a D t \right) \right) \]

(11)

where \(D \) is the transport coefficient. The series is often approximated with a square root of time as follows:

\[q_t^{\text{PD1}} \approx q_t \left(1 - \frac{6}{\pi^2} \exp (-B t) \right) \]

(13)

This model is denoted as PD1 (particle diffusion model with 1 term). Then:

\[t_{1/2}^{\text{PD1}} = \frac{1}{D} \ln \frac{12}{B} \]

(14)

The goodness of fitting of kinetics models was evaluated with use of standard error of regression.

\[S_{\text{model}} = \sqrt{\frac{1}{n-p-1} \sum_{i=1}^{n} \left(q_i - q_i^{\text{model}} \right)^2} \]

(15)

where \(n \) is count of experimental points, and \(p \) is the number of parameters in the model.

2.8. Adsorption thermodynamics

In order to investigate the effect of temperature, sorption tests were carried out at temperatures of 20°C, 30°C, 40°C, 50°C and 60°C in the range of initial concentrations from 30 to 300 mg/dm³ for MB and from 10 to 100 mg/dm³ for PVP-I. The mass of the adsorbent was 0.4 g, and the volume of the solution was 0.1 dm³.

Then, thermodynamic parameters were determined: enthalpy change \(\Delta H \) (kJ/mol), entropy change \(\Delta S \) (kJ/(mol·K)) and Gibbs free energy change \(\Delta G \) (kJ/mol). According to the van’t Hoff equation:
\[\ln K_{eq} = \frac{\Delta H}{RT} + \frac{\Delta S}{R} \] \hspace{1cm} (16) \\

where \(K_{eq} \) is the equilibrium constant of the reaction, \(R \) is the universal gas constant (8.314 J/(mol·K)), \(T \) is temperature (K). The equilibrium constant was calculated as:

\[K_{eq} = \frac{K_{m}M_{a}C_{eq}}{\gamma} \] \hspace{1cm} (17) \\

where \(K_{m} \) is Langmuir constant (dm\(^3\)/mg), \(M_{a} \) is molar mass of adsorbate (g/mol), \(\gamma \) is activity coefficient (assumed equal to 1 due to high dilution of the solution), and \(C_{eq} = 1 \) mol/dm\(^3\) is used to obtain dimensionless value \(K_{eq} \) [63]. The values of \(\Delta H \) and \(\Delta S \) were obtained from fitting the measurement points \((T, K_{eq}) \) in coordinates \((1/T, \ln K_{eq}) \) assuming a constant value of \(\Delta H \). The Gibbs free energy change was determined as:

\[\Delta G = \Delta H - T\Delta S \] \hspace{1cm} (18) \\

3. Results and discussion

3.1. Physical and chemical characteristics

The physical and chemical characteristics of sunflower husk biochar obtained in the pyrolysis process at 500°C (sample BC1) and after its chemical activation at 800°C (sample BC2) are presented in Tables 2–4. The obtained results indicate an influence of chemical activation on physical and chemical properties of the biochar. Both BC1 and BC2 samples are characterized by a high pH value of 8.9 and 9.6, respectively. The basic nature of biochars is associated with the pyrolysis process, under the influence of which carbonates are formed and aromatic structures with condensed rings with C–O bonds or reduction of carboxylate, OH (hydroxyl) and carbonates bound to the surface of biochars. As the pyrolysis temperature increases, the number of acidic functional groups decreases, which is correlated with the loss of volatile substances (Table 2) [67]. The obtained values of mineral parts (ash) in the biochars were similar and amounted to about 7%. Ash content in sunflower husk biochar was similar to that obtained in other works, for example, 8.13% for corn husk biochar (pyrolysis at 600°C) [68], 7.85% for apple branches biochar (pyrolysis at 400°C) [69], or 9.5% for bamboo biochar (pyrolysis at 500°C) [70]. Biochars with lower ash content generally have higher porosity [71], which finds confirmation in Table 3. Chemical activation and high pyrolysis temperature caused a large increase in specific surface area, micropore and mesopore volume. The biochar BC2 has a larger pore space compared to BC1, because higher temperature causes additional evaporation of volatile components in biomass [71,72], and the chemical activation induces changes in the surface structure. The lower content of volatile components and the higher content of carbon bound to the solid matter (FC) in the BC2 biochar (Table 2) proves that almost all lignocellulosic material contained in the raw material was decomposed during chemical activation at 800°C [68,73]. The increase in the pyrolysis temperature and chemical activation caused and increase in the total FC content by about 6.5%. The results show also that the volatiles in BC1 sample were not completely evaporated, which may be the reason for blocking some pores. This is confirmed by a rather low available surface area indicated by the iodine value of 92 mg/g and specific surface area of 32.5 m\(^2\)/g. In contrast, the determined iodine value of 495 mg/g and specific surface area of 740.5 m\(^2\)/g for BC2 biochar indicates a higher sorption capacity of this biochar compared to BC1. The elemental analysis of the biochar showed a loss of hydrogen and oxygen and the enrichment of the material with carbon after the chemical activation at 800°C (Table 4). The C content increased from 75.2% to 83.5%, while the H

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BC1</th>
<th>BC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (H(_{2})O)</td>
<td>8.9</td>
<td>9.6</td>
</tr>
<tr>
<td>Moisture, W(_{v}) (%)</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Fixed carbon, FC (%)</td>
<td>81.2</td>
<td>87.8</td>
</tr>
<tr>
<td>Ash, A (%)</td>
<td>7.3</td>
<td>7.0</td>
</tr>
<tr>
<td>Volatile matter, VM (%)</td>
<td>11.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Iodine value, IV (mg/g)</td>
<td>92</td>
<td>495</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BC1</th>
<th>BC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface area (m(^2)/g)</td>
<td>32.5</td>
<td>740.5</td>
</tr>
<tr>
<td>Total pore volume (cm(^3)/g)</td>
<td>0.0183</td>
<td>0.279</td>
</tr>
<tr>
<td>t-Plot micropore volume (cm(^3)/g)</td>
<td>0.0105</td>
<td>0.242</td>
</tr>
<tr>
<td>BJH desorption cumulative volume of pores 1.7–50 nm (cm(^3)/g)</td>
<td>0.00572</td>
<td>0.0419</td>
</tr>
<tr>
<td>BJH desorption cumulative surface area of pores 1.7–50 nm (m(^2)/g)</td>
<td>0.901</td>
<td>51.96</td>
</tr>
<tr>
<td>BJH desorption dominant mesopore width (nm)</td>
<td>10–20</td>
<td>4</td>
</tr>
<tr>
<td>Density (g/cm(^3))</td>
<td>0.40</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Biochar</th>
<th>BC1</th>
<th>BC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (%)</td>
<td>75.2</td>
<td>83.5</td>
</tr>
<tr>
<td>H (%)</td>
<td>2.4</td>
<td>0.97</td>
</tr>
<tr>
<td>N (%)</td>
<td>1.033</td>
<td>0.869</td>
</tr>
<tr>
<td>S (%)</td>
<td>0.045</td>
<td>0.06</td>
</tr>
<tr>
<td>O (%)</td>
<td>21.3</td>
<td>14.6</td>
</tr>
<tr>
<td>H/C</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>O/C</td>
<td>0.28</td>
<td>0.18</td>
</tr>
</tbody>
</table>
and O contents decreased from 2.4% to 0.97% and from 21.3% to 14.6%, respectively, with an increase in temperature from 500°C to 800°C. According to literature reports, it is most likely that higher temperatures of pyrolysis lead to the decomposition of oxygen bonds and the release of low-molecular by-products containing H and O [74]. Similarly, the nitrogen content also decreased. The knowledge of H/C ratio (degree of aromaticity) and O/C ratio (degree of polarity) allows to conclude about the diversity of the chemical structure of biochars. The H/C and O/C ratios of the tested biochars fall in the range of 0.01–0.03 and 0.28–0.18, respectively. The ratios decreased with increasing pyrolysis temperature. These results are consistent with previous studies [68,69]. The O/C ratio, which decreases with the activation temperature, suggests that the surface of the organic material is more hydrophobic and less hydrophilic [69]. In addition, the H/C and O/C ratios indicate the loss of functional groups containing O and H (such as: carboxyl, hydroxyl and others), and greater degree of carbonization.

The above properties indicate that BC2 sample should be a better adsorbent than BC1. Therefore, further research was focused on BC2 sample. The analysis of the granulometric composition of BC2 (Fig. 2) indicates the presence of four dominant grain classes in the tested material: 1–0.03 mm, 0.031–0.05 mm; 0.051–0.1 mm and 0.101–0.35 mm. The percentage share of these classes in the total amount of waste is respectively: 21.4%, 8.6%, 19% and 51%. The dominant grain class in the tested sample is the fraction >0.05 mm, which in total accounts for about 70%.

3.2. Point of zero charge pH

The pH \(_{pzc}\) of an adsorbent is the pH of a solution containing this adsorbent when the net surface charge is zero [75]. At the pH values lower than pH \(_{pzc}\), the surface of adsorbent is positively charged. The surface charge of adsorbent is negative at the pH values higher than pH \(_{pzc}\) [76]. Fig. 3 shows the pH \(_{pzc}\) results for the tested biochar BC2. The pH \(_{pzc}\) of the adsorbent is 8.4. Since MB is a cationic dye, and PVP-I slowly takes cationic form while gradually liberating iodine anions, both adsorbates should be adsorbed with higher efficiency at pH larger than 8.4.

3.3. Adsorption optimization

The input and output data for adsorption optimization on BC2 with use of CCD are presented in Table 5. The removal efficiency of MB is high and falls in the range 86%–100%. As for PVP-I, the efficiency is much lower and varies from around 5% to 75%. The parameters of the approximation of the removal efficiency [Eq. (6)] are shown in Table 6, and the resulting approximations are illustrated in Fig. 4. The details can be found in supporting information.

It follows that pH insignificantly affects the removal efficiency of PVP-I – in both cases the influence of pH is statistically insignificant (all coefficients of terms involving x\(_j\) are absent). This suggests that the adsorption mechanism is weakly related with electrostatic interactions between the adsorbent surface and the adsorbate particles, and indicates other mechanism of adsorption. Various mechanisms of adsorption of MB on a biochar was also reported in [77]. The fitting functions can be presented in (C, m) coordinates (Fig. 4). In case of MB, the removal efficiency has a maximum

![Fig. 2. Granulometric analysis of the BC2 biochar.](image1)

![Fig. 3. Point of zero charge pH for the tested biochar.](image2)
corresponding to adsorbent mass around 0.4 g (per 0.1 dm\(^3\)).

As for PVP-I, the maximum occurs for largest considered adsorbent mass 0.6 g (per 0.1 dm\(^3\)). As a result, such adsorbent masses were used in further research.

3.4. Adsorption kinetics

The adsorption kinetics of MB and PVP-I on BC2 biochar is illustrated in Fig. 5 and Table 7. The adsorption rate is higher for MB – 90% of the equilibrium value is achieved after around 2 min. As for PVP-I, the adsorption rate is visibly slower. The course of the MB kinetic curve indicates strong interactions between the active sites present on the biochar surface and the MB molecules. The rapid course of the adsorption process in the initial stage is associated with a large number of available active sites on the surface of the adsorbent capable of adsorbing dye molecules. However, in the case of PVP-I sorption, the curve shows that particles of this compound gradually occupied the surface of the adsorbent. With the passage of time, the active sites on the surface of BC2 were completely saturated with adsorbate, both for MB and PVP-I, and the experimental curves reached saturation (Fig. 5).

The analysis of the curves shows that about 60 min is sufficient to establish the adsorption equilibrium on the tested adsorbent. The obtained equilibrium time is comparable to those reported in the literature, such as for MB adsorption on biochar obtained from the pyrolysis of barley malt pomace [78].

The course of the curves presented in Fig. 5 also indicates a slightly different mechanism of establishing the equilibrium for MB and PVP-I sorption. The adsorption kinetics was modelled by 4 theoretical models: PFO, PSO, IPD and PD1. The quality of fit for the PFO and PSO models is similar and clearly much higher than that for IPD and PD1. The three models also yield similar \(q_e\) values. However, the PSO model obtained the lowest standard error of regression \((S = 0.02 \text{ mg/g})\) compared to the PFO \((S = 0.14 \text{ mg/g})\) model for MB sorption. This model is explained by external diffusion in the boundary film, surface adsorption and intramolecular diffusion processes [79]. According to [80], the PSO model indicates that chemisorption determines the rate of the MB adsorption process, and the adsorption capacity is proportional to the active areas. As for PVP-I, the experimental data was best reflected by the PSO model \((S = 0.20 \text{ mg/g})\), which suggests that PVP-I adsorption also depends on the adsorbate and includes the process of chemisorption.

Table 5

Input and output data for removal optimization with central composite design

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(C_i (\text{mg/dm}^3))</th>
<th>(x_2)</th>
<th>(m_\sigma (\text{g}))</th>
<th>(x_3)</th>
<th>(\text{pH})</th>
<th>(C_e (\text{mg/dm}^3))</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>PVP-I</td>
<td>MB</td>
<td>PVP-I</td>
<td>MB</td>
<td>PVP-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>7</td>
<td>20.1</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>1</td>
<td>0.35</td>
<td>0</td>
<td>7</td>
<td>18.1</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>7</td>
<td>7.2</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>3</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>3</td>
<td>7</td>
<td>6.1</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>3</td>
<td>7</td>
<td>5.9</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>35</td>
<td>0</td>
<td>0.35</td>
<td>3</td>
<td>7</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Table 6

Best fit parameters for removal efficiency given by Eq. (6)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
<th>Coefficient</th>
<th>Value</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0)</td>
<td>95.9</td>
<td>0.62</td>
<td>(a_0)</td>
<td>13.8</td>
<td>2.4</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-2.45</td>
<td>0.49</td>
<td>(a_1)</td>
<td>-8.26</td>
<td>2.2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>1.50</td>
<td>0.49</td>
<td>(a_2)</td>
<td>6.26</td>
<td>2.2</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.61</td>
<td>0.47</td>
<td>(a_3)</td>
<td>13.6</td>
<td>2.2</td>
</tr>
<tr>
<td>(a_4)</td>
<td>-2.68</td>
<td>0.47</td>
<td>(a_4)</td>
<td>0.28</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Adjusted \(R^2 = 0.77\) Adjusted \(R^2 = 0.75\)
and physisorption. Similar kinetic model fittings were reported for many different pollutant-adsorbent systems in literature [81,82].

In addition, large differences were observed between the adsorption rate constants for MB and PVP-I. For MB sorption, the half-saturation times predicted by the models range from 25 to 80 s, and for PVP-I they were much greater and ranged from 7 to 16 min (Table 7). Such large differences were probably due to the fact that the PVP-I particles are much larger than the MB particles (1.43 × 0.72 nm), as a result of which the MB particles could enter smaller pores on the biochar surface easier than the PVP-I particles [83].

3.5. Thermodynamic studies

The thermodynamic studies require knowledge on the molar mass of the adsorbate. In case of MB the molar mass is well established, but for PVP-I it is not. Therefore, the calculations for PVP-I were performed for various molar masses equal to the α364.95, where 364.95 is the molar mass of the fundamental PVP-I structure (monomer plus two atoms of iodine), and α ≥ 1 is a multiplier. Then Eqs. (16)–(18) yield:

$$\Delta S(\alpha) = \Delta S(1) + R \ln \alpha$$

$$\Delta G(\alpha) = \Delta G(1) - RT \ln \alpha$$

where ΔS and ΔG are functions of α. Therefore, the larger the PVP-I complex the larger ΔS and the smaller ΔG, whereas ΔH is not affected by size of PVP-I complex.

<table>
<thead>
<tr>
<th>Parameter/Indicator</th>
<th>Unit</th>
<th>MB</th>
<th>PVP-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e mg/g</td>
<td>9.79</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>k_1 1/min</td>
<td>0.50</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>$t_{1/2}$ min</td>
<td>1.38</td>
<td>13.22</td>
<td></td>
</tr>
<tr>
<td>S mg/g</td>
<td>0.14</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Parameters related with kinetics models for MB and PVP-I adsorption

<table>
<thead>
<tr>
<th>Parameter/Indicator</th>
<th>Unit</th>
<th>MB</th>
<th>PVP-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e mg/g</td>
<td>9.96</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>k_2 g/(mg·min)</td>
<td>0.20</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>$t_{1/2}$ min</td>
<td>0.5</td>
<td>15.75</td>
<td></td>
</tr>
<tr>
<td>S mg/g</td>
<td>0.02</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Removal efficiency vs. initial concentration and adsorbent mass for MB (a) and PVP-I (b); red and blue lines correspond to differences between experiment and approximation (red – positive, blue – negative); brown line indicates the maximum efficiency for a given initial concentration.

Fig. 5. Kinetics of MB and PVP-I adsorption on BC2 biochar for initial concentration of MB and PVP-I equal to 20 and 50 mg/dm3, respectively.
Fig. 6 shows the plot $\ln K_{eq}$ vs. $1/T$, and Table 8 summarizes the results of the analysis. The Gibbs free energy change is negative for both adsorbates, which means that sorption occurs spontaneously. With increasing temperature, adsorption increased in the case of PVP-I, which means that higher temperatures favor the adsorption of PVP-I, but do not affect significantly the adsorption of MB (Fig. 6). This is also confirmed by the determined value of the enthalpy change close to zero – in the considered temperature range, the temperature change had little effect on the MB sorption process. However, in the case of PVP-I, the enthalpy change is clearly positive. This means that the sorption of PVP-I on biochar from sunflower husks is an endothermic process, better occurring at higher temperatures. Small positive values of ΔS indicate an increase in the degree of randomness (or disorder) in the solid/solution during the sorption of MB and PVP-I [77]. The effect of variable molar mass of PVP-I does not affect significantly the results (see the last two columns of Table 8).

Known values of enthalpy change ΔH and Gibbs free energy change ΔG also allow to characterize the adsorption process as physical or chemical. When ΔH is less than 40 kJ/mol, Van der Waals forces act between the adsorbate and the adsorbent surface, which corresponds to the physical adsorption process. When ΔH is in the range of 40–200 kJ/mol, the acting force is a chemical bond and can be attributed to chemical adsorption [84]. In the conducted tests, ΔH for PVP-I sorption was 39.4 kJ/mol, and only –0.2 kJ/mol for MB. The value of ΔH for PVP-I is close to the cut-off value between physical sorption and chemisorption, which is in line with the sorption kinetics of PVP-I, where it was found that adsorption includes, apart from chemisorption, also physical sorption (section 3.4).

3.6. Comparative studies

Based on Table 5 the adsorbent amount of adsorbate per unit mass of adsorbent was calculated. The maximum value equals 120 and 5.6 mg/g for MB and PVP-I, respectively. The properties of the biochar represented by BC2 sample were compared with those reported in literature (Table 9). It follows that the maximum sorption capacity of the tested biochar with respect to MB is comparable with

Table 8
Thermodynamic parameters of MB and PVP-I sorption on prepared sunflower husks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MB</th>
<th>PVP-I for $\alpha = 1$</th>
<th>PVP-I for $\alpha = 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH, kJ/mol</td>
<td>-0.2 ± 6.5</td>
<td>39.4 ± 10.9</td>
<td>39.4 ± 10.9</td>
</tr>
<tr>
<td>ΔG, kJ/mol</td>
<td>-32.0 ± 13.5</td>
<td>-28.5 ± 22.5</td>
<td>-37.9 ± 22.5</td>
</tr>
<tr>
<td>ΔS, kJ/(mol·K)</td>
<td>0.1 ± 0.02</td>
<td>0.20 ± 0.03</td>
<td>0.23 ± 0.03</td>
</tr>
</tbody>
</table>

Table 9
Comparison of the maximum adsorption capacity of the obtained biochar with other biochars

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Activation method</th>
<th>Adsorbate</th>
<th>Maximum sorption capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunflower husks</td>
<td>Pyrolysis at 800°C plus activation with K_2CO_3</td>
<td>MB</td>
<td>120</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVP-I</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Cedrela odorata L</td>
<td>Pyrolysis at 400°C</td>
<td>MB</td>
<td>158.8</td>
<td>[85]</td>
</tr>
<tr>
<td>Banana pseudostem</td>
<td>Pyrolysis at 200°C plus modification with phosphomolybdic acid</td>
<td>MB</td>
<td>87.28</td>
<td>[86]</td>
</tr>
<tr>
<td>Areca catechu nuts</td>
<td>Pyrolysis at 400°C plus activation with H_3PO_4</td>
<td>MB</td>
<td>333.3</td>
<td>[43]</td>
</tr>
<tr>
<td>White pine wood (80%), spruce i fir (20%)</td>
<td>Pyrolysis up to 525°C</td>
<td>MB</td>
<td>3.99</td>
<td>[87]</td>
</tr>
<tr>
<td>Solid fraction of pig slurry</td>
<td>Pyrolysis at 400°C</td>
<td>MB</td>
<td>16.3</td>
<td>[87]</td>
</tr>
<tr>
<td>Cardboard waste</td>
<td>Pyrolysis at 500°C</td>
<td>MB</td>
<td>1.66</td>
<td>[87]</td>
</tr>
<tr>
<td>Olive pits</td>
<td>Pyrolysis at 500°C</td>
<td>Triclosan (PPCP)</td>
<td>12</td>
<td>[88]</td>
</tr>
<tr>
<td>Olive tree waste</td>
<td>Pyrolysis at 300°C</td>
<td>Triclosan (PPCP)</td>
<td>8.5</td>
<td>[88]</td>
</tr>
<tr>
<td>Waste mix of various pruned trees</td>
<td>Pyrolysis at 900°C</td>
<td>Triclosan (PPCP)</td>
<td>4.5</td>
<td>[88]</td>
</tr>
<tr>
<td>Empty palm bunch</td>
<td>Pyrolysis at 450°C plus activation with H_2SO_4</td>
<td>Triclosan (PPCP)</td>
<td>35.4</td>
<td>[89]</td>
</tr>
</tbody>
</table>
that of other biochars. Unfortunately, no information on PVP-I adsorption on biochars was encountered in literature, although it was very extensively used during COVID-19 epidemic. Therefore, other antiseptic substance (tricosan) was included into the comparison.

4. Conclusions

Based on the results obtained the following conclusions concerning the adsorption of MB and PVP-I on BC2 can be formulated:

- In the tested ranges of values of adsorption conditions the MB and PVP-I adsorption was best for adsorbent dose equal to 4 and 6 g/dm³, respectively.
- The removal efficiency was statistically independent on the pH of the solution in the tested range 3 to 11.
- The results of kinetics studies indicate that the adsorption process for MB proceeds very quickly – after just a few minutes the adsorbent is practically saturated. However, in the case of PVP-I, the adsorption process is much slower and requires several dozen minutes. The kinetics is quite well described by the pseudo-second-order model, which indicates that adsorption involves chemical reactions in addition to physical sorption.
- Negative Gibbs free energy change indicates that adsorption is spontaneous and thermodynamically favored.
- The biochar obtained from sunflower husks in the pyrolysis process and chemical activation is an efficient, cheap and environmentally friendly adsorption material that can be used to remove MB and PVP-I from water and wastewater.

Funding

This research was financially supported by the Faculty of Infrastructure and Environment of the Czestochowa University of Technology.

References

Supporting information

The optimization of adsorption conditions was based on central composite design (CCD) method, which is often used as a kind of response surface methodology (RSM). In the considered case the independent variables were:

- the initial concentration of adsorbate C; 10–250 mg/dm³ for MB, 10–60 mg/dm³ for PVP-I,
- adsorbent mass \(m \); 0.1–0.6 g per 0.1 dm³ of solution,
- the initial pH of the solution: 3–11.

Each independent variable \(X \) is expressed in normalized form. If \(X_{\text{min}} \) and \(X_{\text{max}} \) are the minimum and maximum value of \(X \), then the normalized variable \(x \) corresponding to \(X \) equals:

\[
x = 2\alpha \frac{X - \bar{X}}{\Delta X}
\]

where \(\bar{X} = \frac{X_{\text{max}} + X_{\text{min}}}{2} \) – the mean value, \(\Delta X = (X_{\text{max}} - X_{\text{min}}) \) – the range of \(X \), and \(\alpha \) is a coefficient, which for three variables equal \(\alpha = \sqrt[6]{2} \approx 1.68 \). The inverse transformation is as follows:

\[
X = \bar{X} + \frac{\Delta X}{2\alpha} x
\]

The CCD requires 5 levels of each variable.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(X_{\text{min}})</th>
<th>(\bar{X})</th>
<th>(X_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>–(\alpha)</td>
<td>(X_{\text{min}})</td>
<td>(\bar{X})</td>
<td>(X_{\text{max}})</td>
</tr>
<tr>
<td>0</td>
<td>(\bar{X})</td>
<td>(X_{\text{max}})</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\bar{X})</td>
<td>(X_{\text{min}})</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(X_{\text{min}})</td>
<td>(\bar{X})</td>
<td>(X_{\text{max}})</td>
</tr>
</tbody>
</table>

If full design was used, five levels for three variables would result in \(5^3 = 125 \) sampling points, but the CCD results in 15 different sampling points. However, 20 samples are used, because the central point \((0, 0, 0)\) is used 6 times to reduce the error for mean values. In the considered case the values of independent variables, both physical and normalized, are in columns 1–7 of Table 5 in the main body of the manuscript.

In the next step for each sampling point adsorption was performed. Then the equilibrium concentration of adsorbate \((C) \) was measured, and the removal efficiency was calculated as follows:

\[
E = \frac{C_i - C_f}{C_i} \times 100\%
\]

(S3)

This was the dependent variable, which was then subject to maximization. For this purpose, the following approximation was used:

\[
\hat{E} = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1 x_2 + a_5 x_1 x_3 + a_6 x_2 x_3 + a_7 x_1^2 + a_8 x_2^2 + a_9 x_3^2
\]

where \(a_i \) to \(a_9 \) are unknown coefficients, whereas \(x_1, x_2, \) and \(x_3 \) are the normalized independent variables. Hence, the problem is to:

- find \(a_0 \) to \(a_9 \) by minimizing the residual sum of squares:

\[
\text{RSS} = \sum_{i=1}^{n} (\hat{E}(x_1, x_2, x_3) - E_i)^2 = \min \Rightarrow a_0, a_1, \ldots, a_9
\]

(S5)

- find maximum of \(\hat{E} \).

In the first step, the linear regression method is used to find coefficients \(a_0 \) to \(a_9 \). To assess the goodness of fit the so-called adjusted \(R^2 \) is used, which is defined as follows:

\[
R^2_{\text{adj}} = 1 - \frac{(1 - R^2) \frac{n - k}{n - k - 1}}{} \quad \text{for MB and PVP-I adsorption are as follows:}
\]

\[
\hat{E}_{\text{MB}} = 95.9 - 2.45x_1 + 1.50x_2 + 0.61x_1^2 - 2.68x_2^2
\]

(S7)

\[
\hat{E}_{\text{PVP-I}} = 13.8 - 8.26x_1 + 6.26x_2 + 13.6x_1^2
\]

(S8)

These are the best possible fits with respect to \(R^2_{\text{adj}} \). They are plotted in Fig. 4a and b, respectively.

Step 2) Having found \(\hat{E} \), it is possible to localize the maximum.

Function \(\hat{E}_{\text{MB}} \) depends on \(x_1 \) and \(x_2 \) whereas no term with \(x_3 \) is present. This means that pH weakly affected the removal efficiency. This allows us plotting the function in \((x_1, x_2)\) coordinates – Fig. 4a. The maximum can be easily located at point \((-\alpha, 0.28, 0)\), which corresponds to the lowest concentration and adsorbent mass around 0.4 g per 0.1 dm³. What is interesting, as the concentration changes, the removal efficiency remains best for mass 0.4 g. Therefore, in further experiments the adsorbent mass for MB adsorption was established at this level.

Function \(\hat{E}_{\text{PVP-I}} \) is more ambiguous. Nevertheless, the coefficient related with \(x_3 \) (adsorbent mass) is positive, which indicates that the higher mass of adsorbent the higher removal efficiency. Therefore, the adsorbent mass was established to the maximum tested one (0.6 g per 0.1 dm³ of solution).