Corrigendum

Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process*

Gökçe Didar Değermenci

Department of Environmental Engineering, Kastamonu University, Kastamonu 37150, Turkey
email: gdegermenci@kastamonu.edu.tr/gokcendidar@gmail.com

Received 20 July 2020; Accepted 21 December 2020

The original version of the above article was published with errors in the order of Figures 1 to 6. The correct order of figures is as below.

The author apologizes for any confusion caused. The original article has been updated.

*Published in Desalination and Water Treatment, Volume 218, April 2021, pp. 436–443
doi number of the original article is 10.5004/dwt.2021.26981
Fig. 3. Effect of electrolyte type on dye removal ($C_0 = 100$ mg/L, pH = 7, $T = 20^\circ$C, $J = 1.74$ mA/cm2, Electrolyte = 4 g/L).

Fig. 4. Effect of pH on dye removal ($C_0 = 100$ mg/L, $T = 20^\circ$C, Electrolyte = 4 g/L NaCl, $J = 1.74$ mA/cm2).

Fig. 5. Effect of initial dye concentration on dye removal (pH = 7, $T = 20^\circ$C, Electrolyte = 4 g/L NaCl, $J = 1.74$ mA/cm2).

Fig. 6. Effect of temperature on dye removal (pH = 7, $C_0 = 200$ mg/L, Electrolyte = 4 g/L NaCl, $J = 1.74$ mA/cm2).