References

  1. J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392 (2017) 658–686.
  2. D. Tang, G. Zhang, Ultrasonic-assistant fabrication of cocoonlike Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity, Ultrason. Sonochem., 37 (2017) 208–215.
  3. S. Girish Kumar, K.S.R. Koteswara Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci., 391 (2017) 124–148.
  4. L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renew. Sustain. Energy Rev., 76 (2017) 1393–1421.
  5. H. Gan, G. Zhang, H. Huang, Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites, J. Hazard. Mater., 250–251 (2013) 131–137.
  6. Z. Wan, G. Zhang, X. Wu, S. Yin, Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction, Appl. Catal., B, 207 (2017) 17–26.
  7. O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates, Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light, J. Phys. Chem. B, 108 (2004) 6004–6008.
  8. J.X. Li, J.H. Xu, W.L. Dai, K.N. Fan, Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twist like helix structure, J. Phys. Chem. C, 113 (2009) 8343–8349.
  9. H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol., A, 163 (2004) 37–44.
  10. J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal., B, 60 (2005) 211–221.
  11. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc., 130 (2008) 1676–1680.
  12. A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Manttari, M. Sillanpaa, A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere, 107 (2014) 163–174.
  13. L. Gomathi Devi, R. Kavitha, A review on plasmonic metal/TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Appl. Surf. Sci., 360 (2016) 601–622.
  14. W. Liu, D. Chen, S.H. Yoo, S.O. Cho, Hierarchical visible lightresponse Ag/AgCl@TiO2 plasmonic photocatalysts for organic dye degradation, Nanotechnology, 24 (2013) 405706–405712.
  15. B. Cai, J. Wang, S. Gan, D. Han, Z. Wu, L. Niu, A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities, J. Mater. Chem. A, 2 (2014) 5280–5286.
  16. W. Liao, Y. Zhang, M. Zhang, M. Murugananthan, S. Yoshihara, Photoelectrocatalytic degradation of microcystin-LR using Ag/AgCl/TiO2 nanotube arrays electrode under visible light irradiation, Chem. Eng. J., 231 (2013) 455–463.
  17. L. Qi, J. Yu, G. Liu, P.K. Wong, Synthesis and photocatalytic activity of plasmonic Ag@AgCl composite immobilized on titanate nanowire films, Catal. Today, 224 (2014) 193–199.
  18. D. Wang, Y. Li, G.L. Puma, C. Wang, P. Wang, W. Zhang, Q. Wang, Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst, Chem. Commun., 49 (2013) 10367–10369.
  19. J. Guo, B. Ma, A. Yin, K. Fan, W. Dai, Highly stable and efficient Ag/AgCl@TiO2 photocatalyst: preparation, characterization, and application in the treatment of aqueous hazardous pollutants, J. Hazard. Mater., 211–212 (2012) 77–82.
  20. X.L. Wang, H.Y. Yin, Q.L. Nie, W.W. Wu, Y. Zhang, Q.L. Yuan, Hierarchical Ag/AgCl-TiO2 hollow spheres with enhanced visible-light photocatalytic activity, Mater. Chem. Phys., 185 (2017) 143–151.
  21. Y. Yang, R. Liu, G. Zhang, L. Gao, W. Zhang, Preparation and photocatalytic properties of visible light driven Ag-AgCl-TiO2/palygorskite composite, J. Alloys Compd., 657 (2016) 801–808.
  22. L. Yinghua, W. Huan, L. Li, C. Wenquan, Facile synthesis of Ag@AgCl plasmonic photocatalyst and its photocatalytic degradation under visible light, Rare Met. Mater. Eng., 44 (2015) 1088–1093.
  23. S. Liu, J. Zhu, Q. Yang, P. Xu, J. Ge, X. Guo, Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity, Opt. Mater., 53 (2016) 73–79.
  24. H. Yin, X. Wang, L. Wang, Q.-L. Nie, Y. Zhang, Q. Yuan, W. Wu, Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity, J. Alloys Compd., 657 (2016) 44–52.
  25. Z. Zhao, Y. Wang, J. Xu, C. Shang, Y. Wang, AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocatalysis, Appl. Surf. Sci., 351 (2015) 416–424.
  26. J. Zhou, Y. Cheng, J. Yu, Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films, J. Photochem. Photobiol., A, 223 (2011) 82–87.
  27. D. Wu, L. Wang, X. Song, Y. Tan, Enhancing the visible-lightinduced photocatalytic activity of the self-cleaning TiO2-coated cotton by loading Ag/AgCl nanoparticles, Thin Solid Films, 540 (2013) 36–40.
  28. J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2, Appl. Surf. Sci., 257 (2011) 7083–7089.
  29. P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater., 26 (2014) 4920–4935.
  30. Y. Li, Y. Ding, Porous AgCl/Ag nanocomposites with enhanced visible lightphotocatalytic properties, J. Phys. Chem. C, 114 (2010) 3175–3317.
  31. J. Tian, R. Liu, G. Wang, Y. Xu, X. Wang, H. Yu, Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/AgCl photocatalyst, Appl. Surf. Sci., 319 (2014) 324–331.
  32. S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
  33. P. Singh, M.C. Vishnu, K.K. Sharma, R. Singh, S. Madhav, D. Tiwary, Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and photosonocatalytic reactor, Desal. Wat. Treat., 57 (2016) 20552–20564.
  34. L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon, Adv. Func. Mater., 18 (2008) 2180–2189.
  35. N.R. Khalid, A. Majid, M. Bilal Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review, Ceram. Int., 43 (2017) 14552–14571.
  36. S.L. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeng, S.H. Hong, Mechanical and electrical properties of cross-linked carbon nanotubes, Carbon, 46 (2008) 482–488.
  37. P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal., A, 253 (2003) 337–358.
  38. W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method, Appl. Catal., B, 56 (2005) 305–312.
  39. F. Shahrezaei, P. Pakravan, A. Hemati Azandaryani, M. Pirsaheb, A.M. Mansouri, Preparation of multi-walled carbon nanotubedoped TiO2 composite and its application in petroleum refinery wastewater treatment, Desal. Wat. Treat., 57 (2016) 14443–14452.
  40. T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotube, Thin Solid Films, 515 (2007) 5131–5135.
  41. Y. Yao, G. Li, S. Ciston, R.M. Lueptow, K.A. Gray, Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity, Environ. Sci. Technol., 42 (2008) 4952–4957.
  42. J. Michałowicz, W. Duda, Phenols – sources and toxicity, Pol. J. Environ. Stud., 16 (2007) 347–362.
  43. H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
  44. M.M. Ba Abbad, A.A.H. Kadhum, A.A. Al Amiery, A.B. Abu Bakar Mohamad, M.S. Takriff, Toxicity evaluation for low concentration of chlorophenols under solar radiation using zinc oxide (ZnO) nanoparticles, Int. J. Phys. Sci., 7 (2012) 48–52.
  45. K. Arnoldsson, P.L. Andersson, P. Haglund, Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
  46. J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, Sensitized degradation of chlorophenols on Iron oxides induced by visible light: comparison with titanium oxide, Appl. Catal., B, 34 (2001) 321–333.
  47. K.V. Baiju, P. Shajesh, W. Wunderlich, Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol–gel derived mesoporous titania, J. Mol. Catal. A, 276 (2007) 41–46.
  48. B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon nanotubes synergistically enhance photocatalytic activity of TiO2, Catal. Commun., 9 (2008) 1410–1413.
  49. W. Wang, P. Serp, P. Kalck, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal. A: Chem., 235 (2005) 194–199.
  50. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental, theoretical study, J. Appl. Phys., 114 (2013) 183514.
  51. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumar, K. Srinivasan, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity, Spectrochim. Acta, 79 (2011) 594–598.
  52. Y. Wang, Y. Huang, W. Ho, Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation, J. Hazard. Mater., 169 (2009) 77–87.
  53. E. Bae, W. Choi, Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light, Environ. Sci. Technol., 37 (2003) 147–152.
  54. G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties, J. Mater. Sci., 42 (2007) 7162–7170.
  55. J. Garcia-Serrano, E. Gomez-Hernandez, M. Ocampo- Fernandez, U. Pal, Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles, Curr. Appl. Phys., 9 (2009) 1097–1105.
  56. P. Wang, B.B. Huang, Z.Z. Lou, X.Y. Zhang, X.Y. Qin, Y. Dai, Z.K. Zheng, X.N. Wang, Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures, Chem. A Eur. J., 16 (2010) 538–544.
  57. C. An, S. Peng, Y. Sun, Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst, Adv. Mater., 22 (2010) 2570–2574.
  58. M. Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech., 82 (2010) 1059–1073.
  59. Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Appl. Catal., A, 289 (2005) 186–196.
  60. J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Single-walled carbon nanotubes coated with titania nanoparticles, Carbon, 42 (2004) 895–899.
  61. A. Ebrahimian, M.A. Zanjanchi, Heterogeneous photocatalytic degradation of 4-chlorophenol by immobilization of cobalt tetrasulphophthalocyanine onto MCM-41, Korean J. Chem. Eng., 31 (2014) 218–223.
  62. A. Ebrahimian, M.A. Zanjanchi, H. Noei, M. Arvand, Y. Wang, TiO2 nanoparticles containing sulphonated cobalt phthalocyanine: preparation, characterization and photocatalytic performance, J. Environ. Chem. Eng., 2 (2014) 484–494.
  63. A. Ebrahimian, M.A. Zanjanchi, M. Arvand, Sulphonated cobalt phthalocyanine–MCM-41: an active photocatalyst for degradation of 2,4-dichlorophenol, J. Hazard. Mater., 175 (2010) 992–100.
  64. B.J.P.A. Cornish, L.A. Lawton, P.K.J. Robertson, Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide, Appl. Catal., B, 25 (2000) 59–67.
  65. Q.J. Xiang, J.G. Yu, B. Cheng, H.C. Ong, Microwavehydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres, Chem. Asian J., 5 (2010) 1466–1474.
  66. J.G. Yu, G.P. Dai, B.B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
  67. P.V. Laxma Reddy, B. Kavitha, P.A. Kumar Reddy, K.-H. Kim, TiO2-based photocatalytic disinfection of microbes in aqueous media: a review, Environ. Res., 154 (2017) 296–303.
  68. G. Begum, J. Manna, R.K. Rana, Controlled orientation in a bio-inspired assembly of Ag/AgCl/ZnO nanostructures enables enhancement in visible-light-induced photocatalytic performance, Chem. A Eur. J., 18 (2012) 6847–6853.
  69. X. Jia, Y. Liu, J. Sun, H. Sun, Z. Su, X. Pan, R. Wang, Theoretical investigation of the reactions of CF3CHFOCF3 with the OH radical and Cl atom, J. Phys. Chem. A, 114 (2009) 417–424.
  70. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47 (2008) 7931–7933.
  71. H. Xu, H.M. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS Appl. Mater. Interfaces, 3 (2011) 22–29.