References

  1. A. Alinsafi, F. Evenou, E.M. Abdulkarim, M.N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photocatalysis, Dyes Pigm., 74 (2007) 439–445.
  2. E. Eriksson, A. Baun, P.S. Mikkelsen, A. Ledin, Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark, Desalination, 215 (2007) 187–197.
  3. M. Neumann, R. Schulz, K. Schäfer, W. Müller, W. Mannheller, M. Liess. M. Neumann, R. Schulz, K. Schäfer, W. Müller, W. Mannheller, M. Liess, The significance of entry routes as point and non-point sources of pesticides in small streams, Water Res., 36 (2002) 835–842.
  4. C.S. Jacobsen, M.H. Hjelmsø, Agricultural soils, pesticides and microbial diversity, Curr. Opin. Biotechnol., 27 (2014) 15–20.
  5. X. Dong, L. Zhu, J. Wang, J. Wang, H. Xie, X. Hou, W. Jia, Effects of atrazine on cytochrome P450 enzymes of zebrafish, Chemosphere, 77 (2009) 404–412.
  6. R.M. Whyatt, R. Garfinkel, L.A. Hoepner, D. Holmes, M. Borjas, M.K. Williams, A. Reyes, V. Rauh, F.P. Perera, D.E. Camann, Within and between home variability in indoor-air insecticide levels during pregnancy among an inner-city Cohort from New York City, Environ. Health Perspect., 115 (2007) 383–389.
  7. S.M. Miller, C.W. Sweet, J.V. DePinto, K.C. Hornbuckle, Atrazine and nutrients in precipitation: results from the lake Michigan mass balance study, Environ. Sci. Technol., 34 (1999) 55–61.
  8. K.E. Banks, D.H. Hunter, D.J. Wachal, Chlorpyrifos in surface waters before and after a federally mandated ban, Environ. Int., 31 (2005) 351–356.
  9. A. Kaushik, H.R. Sharma, S. Jain, J. Dawra, C.P. Kaushik, Pesticide pollution of River Ghaggar in Haryana, India, Environ. Monit. Assess., 160 (2010) 61–69.
  10. S. Malato, J. Blanco, J. Cáceres, A.R. Fernández-Alba, A. Agüera, A. Rodríguez, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy, Catal. Today, 76 (2002) 209–220.
  11. S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano, 4 (2010) 1259–1278.
  12. N. Atar, A. Olgun, F. Çolak, Thermodynamic, equilibrium and kinetic study of the biosorption of Basic Blue 41 using Bacillus maceran, Eng. Life Sci., 8 (2008) 499–506.
  13. V.K. Gupta, D. Mohan, S. Sharma, M. Sharma, Removal of basic dyes (Rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash, Sep. Sci. Technol., 35 (2000) 2097–2113.
  14. N. Mohan, N. Balasubramanian, V. Subramanian, Electrochemical treatment of simulated textile effluent, Chem. Eng. Technol., 24 (2001) 749–753.
  15. J. Sojka-Ledakowicz, R. Zylla, Z. Mrozinska, K. Pazdzior, A. Klepacz-Smolka, S. Ledakowicz, Application of membrane processes in closing of water cycle in a textile dye-house, Desalination, 250 (2010) 634–638.
  16. R. Velmurugan, M. Swaminathan, An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light, Sol. Energy Mater. Sol. Cells, 95 (2011) 942–950.
  17. D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1 (1999) 439–458.
  18. R. Esfandyarpour, H. Esfandyarpour, M. Javanmard, J.S. Harris, R.W. Davis, Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor, Biomicrofluidics, 7 (2013) 044114.
  19. R. Esfandyarpour, H. Esfandyarpour, J.S. Harris, R.W. Davis, Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device, Nanotechnology, 24 (2013) 465301.
  20. R. Esfandyarpour, H. Esfandyarpour, M. Javanmard, J.S. Harris, R.W. Davis, Microneedle biosensor: a method for direct labelfree real time protein detection, Sens. Actuators B, 177 (2013) 848–855.
  21. P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Res., 40 (2006) 1276–1286.
  22. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, J. Photochem. Photobiol. A, 183 (2006) 218–224.
  23. L. Pan, J.-J. Zou, S. Wang, Z.-F. Huang, X. Zhang, L. Wang, Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2 by nonmetal doping and water-mediated dye sensitization, Appl. Surf. Sci., 268 (2013) 252–258.
  24. J. Dostanic, B. Grbic, N. Radic, P. Stefanov, Z. Šaponjic, J. Buha, D. Mijin, Photodegradation of an azo pyridone dye using TiO2 films prepared by the spray pyrolysis method, Chem. Eng. J., 180 (2012) 57–65.
  25. T. Kawahara, T. Ozawa, M. Iwasaki, H. Tada, S. Ito, Photocatalytic activity of rutile–anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method, J. Colloid Interface Sci., 267 (2003) 377–381.
  26. Q. Tian, W. Han, P. Liu, S. Lin, J. Zhuang, W. Yang, R. Qiu, β-In2S3 nanocrystals in Nafion membrane: facile synthesis and visible photocatalytic performance, Mater. Lett., 157 (2015) 127–130.
  27. Y. Guo, Z. Gong, P. Li, W. Zhang, B. Gao, Preparation, characterization and enhancement of the visible-light photocatalytic activity of In2O3/Na-bentonite composite, Ceram. Int., 42 (2016) 8850–8855.
  28. T.T. Tseng, J.Y. Uan, W.J. Tseng, Synthesis, microstructure, and photocatalysis of In2O3 hollow particles, Ceram. Int., 37 (2011) 1775–1780.
  29. J.B. Mu, B. Chen, M.Y. Zhang, Z.C. Guo, P. Zhang, Z.Y. Zhang, Y.Y. Sun, C.L. Shao, Y.C. Liu, Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces, 4 (2012) 424–430.
  30. Z.Y. Wang, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, P. Wang, H.X. Liu, J.X. Yu, Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method, J. Phys. Chem. C, 113 (2009) 4612–4617.
  31. S.K. Poznyak, D.V. Talapin, A.I. Kulak, Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method, J. Phys. Chem. B, 105 (2001) 4816–4823.
  32. K. Hara, K. Sayama, K. Arakawa, Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes, Sol. Energy Mater. Sol. Cells, 62 (2000) 441–447.
  33. D. Wang, Z.G. Zou, J.H. Ye, Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors, Chem. Mater., 17 (2005) 3255–3261.
  34. Y.P. Sun, C.J. Murphy, K.R. Reyes-Gil, E. Reyes-García, J.P. Lilly, D. Raftery, Carbon-doped In2O3 films for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 33 (2008) 5967–5974.
  35. N. Lu, C. Shao, X. Li, F. Miao, K. Wang, Y. Liu, A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity, Appl. Surf. Sci., 391 (2017) 668–676.
  36. R.M. Mohamed, Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine, Ceram. Int., 41 (2015) 1197–1204.