1. S.R. Rao, Resource, Recovery and Recycling from Metallurgical Wastes, Elsevier, Amsterdam, The Netherlands, 2006.
  2. P. Szyczewski, J. Siepak, P. Niedzielski, T. Sobczyński, Research on heavy metals in Poland, Pol. J. Environ. Stud., 18 (2009) 755–768.
  3. J.M. Magalhaes, J.E. Silva, F.P. Castro, J.A. Labrincha, Physical and chemical characterization of metal finishing industrial wastes, J. Environ. Manage., 75 (2005) 157–166.
  4. E. Radzyminska-Lenarcik, M. Sulewski, W. Urbaniak, Recovery of zinc from metallurgic waste sludges, Pol. J. Environ. Stud., 24 (2015) 1277–1282.
  5. V. Kocanová, J. Cuhorka, L. Dušek, P. Mikulášek, Application of nanofiltration for removal of zinc from industrial wastewater, Desal. Wat. Treat., 75 (2017) 342–347.
  6. S.H. Chang, Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater, Desal. Wat. Treat., 57 (2016) 19785–19793.
  7. K. Ali, R. Nawaz, N. Ali, A. Khaliq, R. Ullah, Selective removal of zinc by using tri-ethanolamine-based supported liquid membrane, Desal. Wat. Treat., 57 (2016) 8549–8560.
  8. M.K. Jha, V. Kumar, R.J. Singh, Review of hydrometallurgical recovery of zinc from industrial wastes, Resour. Conserv. Recycl., 33 (2001) 1–22.
  9. E. Silva, A.P. Paiva, D. Soares, A. Labrincha, F. Castro, Solvent extraction applied to the recovery of heavy metals from galvanic sludge, J. Hazard. Mater., B120 (2005) 113–118.
  10. M. Kul, K.O. Oskay, Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction, Hydrometallurgy, 155 (2015) 153–160.
  11. Ch. F. Bennani, O. M’hiri, Comparative study of the removal of heavy metals by two nanofiltration membranes, Desal. Wat. Treat., 53 (2015) 1024–1030.
  12. R. Nawaz, K. Ali, M. Khan, Extraction of copper from wastewater through supported liquid membrane using tri-ethanolamine as a carrier, Desal. Wat. Treat., 57 (2016) 21827–21841.
  13. J.A. Carrera, E. Bringas, M.F. Roman, I. Ortiz, Selective membrane alternative to recovery of zinc from hot-dip galvanizing effluents, J. Membr. Sci., 326 (2009) 672–680.
  14. X.J. Yang, A.G. Fane, S. MacNaughton, Removal and recovery of heavy metals from wastewaters by supported liquid membranes, Water Sci. Technol., 43 (2001) 341–348.
  15. C. Kozłowski, W. Apostoluk, W. Walkowiak, A. Kita, Removal of Cr(VI), Zn(II) and Cd(II) ions by transport across polymer inclusion membrane with basic ion carriers, Physicochem. Prob. Miner. Process., 36 (2002) 115–122.
  16. V.S. Kislik, Ed., Liquid Membranes. Principles and Application in Chemical Separation and Wastewater Treatment, Elsevier, UK, 2010.
  17. G. Arslan, A. Yilmaz, A. Tor, M. Ersoz, Preparation of polymer inclusion membrane with sodium diethyldithiocarbamate as a carrier reagent for selective transport of zinc ions, Desal. Wat. Treat., 75 (2017) 348–356.
  18. E. Radzyminska-Lenarcik, Search for the possibility of utilizing the differences in complex-forming capacities of alkylimidazoles for selective extraction of some metal ions from aqueous solutions, Pol. J. Chem. Technol., 10 (2008) 73–78.
  19. E. Radzyminska-Lenarcik, The influence of the alkyl chain length on extraction equilibrium of Cu(II) complexes with 1-alkylimidazoles in aqueous solution/organic solvent systems, Solvent Extr. Ion Exch., 25 (2007) 53–64.
  20. E. Radzyminska-Lenarcik, The influence of alkyl chain length in 1,2-dialkylimidazoles on the extraction capacity and structure of their copper(II) complexes, Sep. Sci. Technol., 44 (2009) 954–970.
  21. E. Radzyminska-Lenarcik, K. Witt, The influence of alkyl chain length and steric effect on the stability constants and extractability of Co(II) complexes with 1-alkyl-2-methylimidazoles, Sep. Sci. Technol., 50 (2015) 676–682.
  22. B. Lenarcik, A. Kierzkowska, The influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4-methylimidazoles, Sep. Sci. Technol., 39 (2004) 3485–3508.
  23. B. Lenarcik, A. Adach, E. Radzyminska-Lenarcik, The influence of steric effect and alkyl chain length on the extraction of the complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1-alkyl-2-methylimidazole, Pol. J. Chem., 73 (1999) 1273–1281.
  24. B. Lenarcik, K. Kurdziel, R. Czopek, Search for optimum conditions of extraction of metal complexes with alkylimidazoles. III. Structure-extractability relationships for 1,4-dimethylimidazole complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), Solvent Extr. Ion Exch., 4 (1986) 165–182.
  25. M. Ulewicz, K. Sadowska, J.F. Biernat, Selective transport of Pb(II) across polymer inclusion membrane using imidazole azocrown ethers as carriers, Physicochem. Prob. Miner. Process., 41 (2007) 133–143.
  26. M. Ulewicz, K. Sadowska, J.F. Biernat, Facilitated transport of Zn(II), Cd(II) and Pb(II) across polymer inclusion membrane doped with imidazole azocrown ethers, Desalination, 214 (2007) 352–364.
  27. E. Luboch, E. Wagner-Wysiecka, M. Fainerman-Melnikova, L.F. Lindoy, J.F. Biernat, Pyrrole azocrown ethers. Synthesis, complexation, selective lead transport and ion-selective membrane electrode studies, Supramolecular Chem., 18 (2006) 593–601.
  28. M. Ulewicz, E. Radzyminska-Lenarcik, Supported liquid (SLM) and polymer inclusion (PIM) membranes pertraction of copper(II) from aqueous nitrate solutions by 1-hexyl-2- methylimidazole, Sep. Sci. Technol., 47 (2012) 1383–1389.
  29. E. Radzyminska-Lenarcik, M. Ulewicz, Selective transport of Cu(II) across a polymer inclusion membrane with 1-alkylimidazole from nitrate solutions, Sep. Sci. Technol., 47 (2012) 1113–1118.
  30. M. Ulewicz, E. Radzyminska-Lenarcik, Application of supported and polymer membrane with 1-decyl-2-methylimidazole for separation of transition metal ions, Physicochem. Prob. Miner. Process., 48 (2012) 91–102.
  31. M. Ulewicz, E. Radzyminska-Lenarcik, Transport of metal ions across polymer inclusion membrane with 1-alkylimidazole, Physicochem. Prob. Miner. Process. 46 (2011) 199–130.
  32. E. Radzyminska-Lenarcik, M. Ulewicz, Application of polymer inclusion and membranes supported with 1-alkyl-2-methylimidazoles for separation of selected transition metal ions, Desal. Wat. Treat., 64 (2017) 425–431.
  33. E. Radzyminska-Lenarcik, M. Ulewicz, The use of 1-alkylimidazoles for selective separation of zinc ions in the transport process across polymer inclusion membrane, Physicochem. Prob. Miner. Process., 50 (2014) 131−142.
  34. M. Ulewicz, E. Radzyminska-Lenarcik, Application of polymer inclusion membranes doped with 1-hexyl-4-methylimidazole for pertraction of zinc(II) and other transition metal ions, Physicochem. Prob. Miner. Process., 51 (2015) 447–460.
  35. E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions, Pol. J. Chem. Technol., 17 (2015) 51–56.
  36. M. Ulewicz, E. Radzyminska-Lenarcik, Application of polymer and supported membranes with 1-decyl-4-methylimidazole for pertraction of transition metal ions, Sep. Sci. Technol., 49 (2014) 1713–1721.
  37. J. Pernak, J. Krysinski, A. Skrzypczak, Bakterizide wirkung von iminium-verbindungen. A. Tens. Surfactants Deterg., 24 (1987) 276–286.
  38. M. Ulewicz, U. Lesinska, M. Bochenska, Transport of lead across polymer inclusion membrane with p-tert-butylcalix[4]arene derivative, Physicochem. Prob. Miner. Process., 44 (2010) 245–256.
  39. P.R. Danesi, Separation of metal species by supported liquid membranes, Sep. Sci. Technol., 19 (1984–1985) 857–894.
  40. R.J. Sundberg, R.B. Martin, Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological system, Chem. Rev., 74 (1974) 471–517.
  41. F. Mulla, F. Marsicano, B.S. Nakani, R.D. Hancock, Stability of ammonia complexes that are unstable to hydrolysis in water, Inorg. Chem., 24 (1985) 3076–3080.
  42. J. Kozlowska, C.A. Kozlowski, J.J. Koziol, Transport of Zn(II), Cd(II) and Pb(II) across CTA plasticized membranes containing organophosphorous acids as ion carriers, Sep. Purif. Technol., 57 (2007) 430–434.
  43. M. Sugiura, M. Kikkawa, S. Urita, Effect of plasticizer o carriermediated transport of zinc ion through cellulose triacetate membranes, Sep. Sci. Technol., 22 (1987) 2263–2268.
  44. R.A. Bartsch, W.A. Charewicz, W. Walkowiak, B. Amiri-Eliasi, Metal Ion Transport across Polymer Inclusion Membranes, Proc. International Solvent Extraction Conference, Moskwa, 1998, p. 205.
  45. J.R. Wolf, W. Strieder, Tortuosities for a random fiber bed: overlapping, parallel cylinders of several radii, J. Membr. Sci., 49 (1999) 103–115.
  46. G. Salazar-Alvarez, A.N. Bautista-Flores, E.R. San Miguel, M. Muhammed, J. Gyves, Transport characterization of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier, J. Membr. Sci., 250 (2005) 247–257.
  47. M. Ulewicz, J. Szczygelska-Tao, J.F. Biernat, Selectivity of Pb(II) transport across polymer inclusion membranes doped with imidazole azothiacrown ethers, J. Membr. Sci., 344 (2009) 32–38.
  48. A. Gherrou, H. Kerdjoudj, R. Molinari, P. Seta, Preparation and characterization of polymeric plasticized membranes (PPM) embedding a crown ether carrier application to copper ions transport, Mater. Sci. Eng. C, 25 (2005) 436–443.
  49. O. Arous, M. Amara, H. Kerdjoudj, Synthesis and characterization of cellulose triacetate and poly(ethyleneimine) membranes containing a polyether macrobicyclic: their application to the separation of copper(II) and silver(I) ions, J. Appl. Polym. Sci., 93 (2004) 1401–1410.
  50. N. Benosmane, S.M. Hamdi, M. Hamdi, B. Boutemeur, Selective transport of metal ions across polymer inclusion membranes containing calix[4]resorcinares, Sep. Purif. Technol., 65 (2009) 211–219.
  51. A.L. Ocampo, J.C. Aguilar, E.R. de San Miguel, M. Monroy, P. Roquero, J. de Gyves, Novel proton-conducting polymer inclusion membranes, J. Membr. Sci., 326 (2009) 382–387.
  52. M. Resina, J. Macanas, J. de Gyves, M. Munoz, Development and characterization of hybrid membranes based on an organic matrix modified with silanes for metal separation, J. Membr. Sci., 289 (2007) 150–158.