1. S. Ayoob, A.K. Gupta, V.T. Bhat, A conceptual overview on sustainable technologies for the defluoridation of drinking water, Crit. Rev. Environ. Sci. Technol., 38 (2008) 401–470.
  2. I.A. Hamza, L. Jurzik, A. Stang, K. Sure, K. Uberla, M. Wilhelm, Detection of human viruses in rivers of a densely-populated area in Germany using a virus adsorption elution method optimized for PCR analyses, Water Res., 43 (2009) 2657–2668.
  3. S.V. Jadhav, E. Bringas, G.D. Yadav, V.K. Rathod, I. Ortiz, K.V. Marathe, Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal, J. Environ. Manage., 162 (2015) 306–325.
  4. United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/1, 2015.
  5. D. Venieri, A. Fraggedaki, M. Kostadima, E. Chatzisymeon, V. Binas, A. Zachopoulos, G. Kiriakidis, D. Mantzavinos, Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: photocatalyst characterization and disinfection performance, Appl. Catal., B, 144–145 (2014) 93–101.
  6. D.N. King, M.J. Donohue, S.J. Vesper, E.N. Villegas, M.W. Ware, M.E. Vogel, E.F. Furlong, D.W. Kolpin, S.T. Glassmeyer, S. Pfaller, Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health, Sci. Total Environ., 562 (2016) 987–995.
  7. A. Pruss-Ustun, J. Bartram, T. Clasen, J.M. Colford, O. Cumming, V. Curtis, S. Bonjour, A.D. Dangour, J. De France, L. Fewtrell, M.C. Freeman, Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries, Trop. Med. Int. Health, 19 (2014) 894–905.
  8. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  9. T. Thompson, J. Fawell, S. Kunikane, D. Jackson, S. Appleyard, P. Callan, J. Bartram, P. Kingston, Chemical Safety of Drinking Water: Assessing Priorities for Risk Management, World Health Organization, Geneva, VII 2007, p. 142.
  10. WHO Guidelines for Drinking Water Quality, World Health Organization, Vol. 1, 4th ed., 2011, p. 178.
  11. M. Amini, K.C. Abbaspour, M. Berg, L. Winkel, S.J. Hug, E. Hoehn, H. Yang, C.A. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater, Environ. Sci. Technol., 42 (2008) 3669–3675.
  12. J. Qiao, Z. Cui, Y. Sun, Q. Hu, X. Guan, Simultaneous removal of arsenate and fluoride from water by Al-Fe hydr(oxides), Front. Environ. Sci. Eng., 8 (2014) 169–179.
  13. R. Liu, W. Gong, H. Lan, T. Yang, H. Liu, J. Qu, Simultaneous removal of arsenate and fluoride by iron and aluminium binary oxide: competitive adsorption effects, Sep. Purif. Technol., 92 (2012) 100–105.
  14. V. Kumar, N. Talreja, D. Deva, N. Sankararamakrishnan, A. Sharma, N. Verma, Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater, Desalination, 282 (2011) 27–38.
  15. Y. Ku, H.M. Chiou, The adsorption of fluoride ion from aqueous solution by activated alumina, Water Air Soil Pollut., 133 (2002) 349–360.
  16. T.C. Prathna, S.K. Sharma, M. Kennedy, Development of iron oxide nanoparticle adsorbents for arsenic and fluoride removal, Desal. Wat. Treat., 67 (2017) 187–195.
  17. V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (2009) 1–13.
  18. J.K. Patra, K.H. Baek, Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo catalysed condition and investigation of their antimicrobial and antioxidant activity, J. Photochem. Photobiol., B, 173 (2017) 291–300.
  19. P.A. Prashanth, R.S. Raveendra, R. HariKrishna, S. Ananda, N.P. Bhagya, B.M. Nagabhushana, K. Lingaraju, H.R. Naika, Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles, J. Asian Ceram. Soc., 3 (2015) 345–351.
  20. A. Amirsalari, S.F. Shayesteh, Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles, Superlattices Microstruct., 82 (2015) 507–524.
  21. E. Sahin, S.J. Musevi, A. Aslani, Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO-Al2O3 mixed oxide nanoparticles, Arabian J. Chem., 10 (2017) S230–S235.
  22. G. Wang, W. Jin, A.M. Qasim, A. Gao, X. Peng, W. Li, H. Feng, P.K. Chu, Antibacterial effects of titanium embedded with silver nanoparticles based on electron transfer induced reactive oxygen species, Biomaterials, 124 (2017) 25–34.
  23. L. Chai, Y. Wang, N. Zhao, W. Yang, X. You, Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water, Water Res., 47 (2013) 4040–4049.
  24. J. Lian, J. Ma, X. Duan, T. Kim, H. Li, W. Zheng, One step ionothermal synthesis of γ Al2O3 mesoporous nanoflakes at low temperature, Chem. Commun., 46 (2010) 2650–2652.
  25. K.S. Ranjith, P. Manivel, R.T. Rajendrakumar, T. Uyar, Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption, Chem. Eng. J., 325 (2017) 588–600.
  26. J. Sun, Z. Zhang, J. Ji, M. Dou, F. Wang, Removal of Cr6+ from wastewater via adsorption with high specific surface area nitrogen doped hierarchical porous carbon derived from silkworm cocoon, Appl. Surf. Sci., 405 (2017) 372–279.
  27. Z. Guo, T. Pereira, O. Choi, Y. Wang, H.T. Hahn, Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties, J. Mater. Chem., 16 (2006) 2800–2808.
  28. U. Janosovits, G. Ziegler, U. Scharf, A. Wokaun, Structural characterization of intermediate species during synthesis of Al2O3-aerogels, J. Non-Cryst. Solids, 210 (1997) 1–13.
  29. D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Synthesis and characterization of iron oxide nanoparticles by solvothermal method, Prot. Met. Phys. Chem. Surf., 50 (2014) 628–631.
  30. M.R. Das, J.M. Borah, W. Kunz, B.W. Ninham, S. Mahiuddin, Ion specificity of the zeta potential of α alumina, and of the adsorption of p-hydroxybenzoate at the α alumina-water interface, J. Colloid Interface Sci., 344 (2010) 482–491.
  31. J. Wang, W. Xu, L. Chen, X. Huang, J. Liu, Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water, Chem. Eng. J., 251 (2014) 25–34.
  32. S. Dixit, J.G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility, Environ. Sci. Technol., 32 (2003) 4182–4189.
  33. D. Mohan, C.U. Pittmann Jr., Arsenic removal from water/wastewater using adsorbents – a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  34. C.H. Liu, Y.H. Chuang, T.Y. Chen, Y. Tian, H. Li, M.K. Wang, W. Zhang, Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic properties, Environ. Sci. Technol., 49 (2015) 7726–7734.
  35. V.K. Rathore, D.K. Dohare, P. Mondal, Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite, J. Environ. Chem. Eng., 4 (2016) 2417–2430.
  36. C. Han, H. Li, H. Pu, H. Yu, L. Deng, S. Huang, Y. Luo, Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(V), Chem. Eng. J., 217 (2013) 1–9.
  37. J. Mendoza-Barron, A. Jacobo-Azuara, R. Levya-Ramos, S. Berber-Mendoza, R.M. Guerrero-Coronado, L. Fuentes-Rubio, J.M. Martinez-Rosales, Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite, Adsorption, 17 (2011) 489–496.
  38. I. Langmuir, The constitution and fundamental properties of solid and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  39. H. Freundlich, Ueber die Adsorption in Losungen, Z. Phys. Chem., 57 (1906) 385–470.
  40. C. Escudero, N. Fiol, I. Villaescusa, J.C. Bollinger, Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads, J. Hazard. Mater., 164 (2009) 533–541.
  41. W.H. Xu, J. Wang, L. Wang, G.P. Sheng, J.H. Liu, H.Q. Yu, X.J. Huang, Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface and structure dependent properties, J. Hazard. Mater., 260 (2013) 498–507.
  42. S.X. Zhang, H.Y. Niu, Y.Q. Cai, X.L. Zhao, Y.L. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J., 158 (2010) 599–607.
  43. E.T. Kamga, N. Audebrand, A. Darchen, Effect of co-existing ions during the preparation of alumina by electrolysis with aluminium soluble electrodes: structure and defluoridation activity of electro-synthesized adsorbents, J. Hazard. Mater., 254–255 (2013) 125–133.
  44. I. Ali, Z.A. ALOthman, M.M. Sanagi, Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water, J. Mol. Liq., 211 (2015) 457–465.
  45. L. Yan, S. Hu, C. Jing, Recent progress of arsenic adsorption on TiO2 in the presence of coexisting ions: a review, J. Environ. Sci., 49 (2016) 74–85.
  46. J. Cui, J. Du, S. Yu, C. Jing, T. Chan, Groundwater arsenic removal using granular TiO2: integrated laboratory and field study, Environ. Sci. Pollut. Res., 22 (2015) 8224–8234.
  47. S. Lagergren, Zur theorie der sogenannten adsorption geloester stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  48. G. McKay, Y.S. Ho, Pseudo second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  49. T. Clasen, S. Boisson, P. Routray, B. Torondel, M. Bell, O. Cumming, J. Ensink, M. Freeman, M. Jenkins, M. Odagin, S. Ray, A. Sinha, M. Suar, W.P. Schmidt, Effectiveness of a rural sanitation programme on diarrhoea, soil transmitted helminth infection and child malnutrition in Odisha, India: a cluster randomised trial, Lancet Global Health, 2 (2014) 645–653.
  50. T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, S. Margel, Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties, Colloids Surf., A, 374 (2011) 1–8.
  51. C. Lee, J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, D.L. Sedlak, Bactericidal effect of zero valent iron nanoparticles on Escherichia coli, Environ. Sci. Technol., 42 (2008) 4927–4933.
  52. E.N. Taylor, T.J. Webster, The use of super paramagnetic nanoparticles for prosthetic biofilm, Int. J. Nanomed., 4 (2009) 145–152.
  53. I.M. Sadiq, B. Chowdhury, N. Chandrasekaran, A. Mukherjee, Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles, Nanomed. Nanotechnol. Biol. Med., 5 (2009) 282–286.
  54. N.A. Oladoja, S. Hu, J.E. Drewes, B. Helmreich, Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride, Sep. Purif. Technol., 162 (2016) 195–202.
  55. L. Chen, H.X. Wu, T.J. Wang, Y. Jin, Y. Zhang, X.M. Dou, Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed, Powder Technol., 193 (2009) 59–64.
  56. K. Gupta, S. Bhattacharya, D. Chattopadhyay, A. Mukhopadhyay, H. Biswas, J. Dutta, U.C. Ghosh, Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(V) sorption behaviour, Chem. Eng. J., 172 (2011) 219–229.