References

  1. T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong, C.-H. Wang, Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies, Bioresour. Technol., 200 (2016) 350–359.
  2. M. Mohamed Sihabudeen, A. Abbas Ali, A. Zahir Hussain, Removal of heavy metals from ground water using eucalyptus carbon as adsorbent, Int. J. Chem. Tech. Res. 9 (2016) 254–257.
  3. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  4. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review, Bioresour. Technol., 99 (2008) 6017–6027.
  5. M. Nadeem, A. Mahmood, S.A. Shahid, S.S. Shah, A.M. Khalid, G. McKay, Sorption of lead from aqueous solution by chemically modified carbon adsorbents, J. Hazard. Mater., 138 (2006) 604–613.
  6. F.-S. Zhang, J.O. Nriagu, H. Itoh, Mercury removal from water using activated carbons derived from organic sewage sludge, Water Res., 39 (2005) 389–395.
  7. A.M. Youssef, T. El-Nabarawy, S.E. Samra, Sorption properties of chemically-activated carbons: 1. Sorption of cadmium(II) ions, Colloids Surf., A, 235 (2004) 153–163.
  8. H. Yanagisawa, Y. Matsumoto, M. Machida, Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution, Appl. Surf. Sci., 256 (2010) 1619–1623.
  9. M. Ghasemi, M.Z. Khosroshahy, A.B. Abbasabadi, N. Ghasemi, H. Javadian, M. Fattahi, Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with tetraethylenepentamine and its adsorption behaviour toward Ni (II) in aqueous solution: kinetic, equilibrium and thermodynamic studies, Powder Technol., 274 (2015) 362–371.
  10. A. Üçer, A. Uyanik, S.F. Aygün, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47 (2006) 113–118.
  11. H.G. Park, T.W. Kim, M.Y. Chae, I.K. Yoo, Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics, Process Biochem., 42 (2007) 1371–1377.
  12. C.K. Ahn, D. Park, S.H. Woo, J.M. Park, Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, J. Hazard. Mater., 164 (2009) 1130–1136.
  13. R. Gottipati, S. Mishra, Process optimization of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design, Chem. Eng. J., 160 (2010) 99–107.
  14. M. Ahmedna, W.E. Marshall, R.M. Rao, Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol., 71 (2000) 113–123.
  15. U. Kumar, Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: a review, Sci. Res. Essay, 1 (2006) 33–37.
  16. L.C.A. Oliveira, E. Pereira, I.R. Guimaraes, A. Vallone, M. Pereira, J.P. Mesquita, K. Sapag, Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J. Hazard. Mater., 165 (2009) 87–94.
  17. M. Gonçalves, M.C. Guerreiro, L.C.A. Oliveira, C. Solar, M. Nazarro, K. Sapag, Micro mesoporous activated carbon from coffee husk as biomass waste for environmental applications, Waste Biomass Valorization, 4 (2013) 395–400.
  18. S. Rovani, A.G. Rodríguez, L.F. Medeiros, R. Cataluña, E.C. Lima, A.N. Fernández, Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17β-estradiol removal from aqueous solution, J. Environ. Chem. Eng., 4 (2016) 2128–2137.
  19. J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85 (2007) 833–846.
  20. A. Sheikhhosseini, M. Shirvani, H. Shariatmadari, F. Zvomuya, B. Najafic, Kinetics and thermodynamics of nickel sorption to calcium–palygorskite and calcium–sepiolite: a batch study, Geoderma, 217–218 (2014) 111–117.
  21. Y.S. Dzyazko, L.N. Ponomaryova, Y.M. Volfkovich, V.V. Trachevskii, A.V. Palchik, Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties, Microporous Mesoporous Mater., 198 (2014) 55–62.
  22. L.R. Rad, A. Momeni, B.F. Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent, Chem. Eng. J., 256 (2014) 119–127.
  23. A.Z.M. Badruddoza, Z.B. Zakir Shawon, T.W. Jin Daniel, K. Hidajat, M. Shahab Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater, Carbohydr. Polym., 91 (2013) 322–332.
  24. A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine, J. Hazard. Mater., 181 (2010) 836–844.
  25. WHO, Guidelines for Drinking-Water Quality, Chemical Fact Sheets, World Health Organization, Geneva 2004.
  26. WHO, Guidelines for Drinking-Water Quality, 1st Addendum, Chemical Fact Sheets, World Health Organization, Geneva 2006.
  27. M. Adib Yahya, Z. Al-Qodah, C.W. Zanariah Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev., 46 (2015) 218–235.
  28. Z.R. Lazic, Ed., Design of Experiments in Chemical Engineering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
  29. T. Cornelissen, J. Yperman, G. Reggers, S. Schreurs, R. Carleer, Flash co-pyrolysis of biomass with polylactic acid. Part I: influence on bio-oil yield and heating value, Fuel, 87 (2008) 1031–1041.
  30. K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, Activated carbon from pyrolysis of brewer’s spent grain production and adsorption properties, Waste Manage. Res., 32 (2014) 634–645.
  31. D.C. Montgomery, Design and Analysis of Experiments, 4th ed., John Wiley and Sons, New York, 1997.
  32. E.C. Harrington, The desirability function, Ind. Qual. Control, 21 (1965) 494–498.
  33. G. Derringer, R. Suich, Simultaneous optimization of several response variables, J. Qual. Technol., 12 (1980) 214–219.
  34. M. Fereidouni, A. Daneshi, H. Younesi, Biosorption equilibria of binary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology, J. Hazard. Mater., 168 (2009) 1437–1448.
  35. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function, Appl. Surf. Sci., 258 (2012) 4402–4410.
  36. M. Loredo-Cancino, E. Soto-Regalado, F.J. Cerino-Córdova, R.B. García-Reyes, A.M. García-León, M.T. Garza-González, Determining optimal conditions to produce activated carbon from barley husks using single or dual optimization, J. Environ. Manage., 125 (2013) 117–125.
  37. J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol., 101 (2010) 1974–1982.
  38. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulphide nanoparticle loaded on activated carbon, Spectrochim. Acta, Part A, 122 (2014) 223–231.
  39. S. Khodadoust, M. Hadjmohammadi, Determination of N-methylcarbamate insecticides in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of experimental design and desirability function, Anal. Chim. Acta, 699 (2011) 113–119.
  40. L. Vera Candioti, M.M. De Zan, M.S. Cámara, H.C. Goicoechea, Experimental design and multiple response optimization. Using the desirability function in analytical methods development, Talanta, 124 (2014) 123–138.
  41. M. Hernández Rodriguez, J. Yperman, R. Carleer, J. Maggen, D. Dadi, G. Gryglewicz, B. Van der Bruggen, J. Falcón Hernández, A. Otero Calvis, Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon, J. Environ. Chem. Eng., 6 (2018) 1161–1170.
  42. W.E. Oliveira, A.S. Franca, L.S. Oliveira, S.D. Rocha, Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions, J. Hazard. Mater., 152 (2008) 1073–1081.
  43. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  44. S. Kundu, A.K. Gupta, Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122 (2006) 93–106.
  45. A.B. Pérez-Marín, V. Meseguer Zapata, J.F. Ortuno, M. Aguilar, J. Sáez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard. Mater., 139 (2007) 122–131.
  46. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeule, Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  47. M. El-Sadaawy, O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat, Alexandria Eng. J., 53 (2014) 399–408.
  48. G.P. Jeppu, T. Prabhakar Clement, A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects, J. Contam. Hydrol., 129–130 (2012) 46–53.
  49. F. Stoeckil, E. Daguerre, A. Guillot, The development of micropore volumes and widths during physical activation of various precursors, Carbon, 37 (1999) 2075–2077.
  50. A.V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons, Carbon, 47 (2009) 1617–1628.
  51. F. Stoeckli, M.V. Lopez-Ramon, C. Moreno-Castilla, Adsorption of phenolic compounds from aqueous solutions, by activated carbons, described by the Dubinin−Astakhov equation, Langmuir, 17 (2001) 3301–3306.
  52. P. Tarazona, M. Bettolo Marconi, R. Evans, Phase equilibria of fluid interfaces and confined fluids: non-local versus local density functionals, Mol. Phys., 60 (1987) 573.
  53. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  54. X.S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London 1997.
  55. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., Chichester, 2006.
  56. A. Ewecharoen, P. Thiravetyan, E. Wendel, H. Bertagnolli, Nickel adsorption by sodium polyacrylate-grafted activated carbon, J. Hazard. Mater., 171 (2009) 335–339.
  57. L. Huang, Y. Sun, T. Yang, L. Li, Adsorption behavior of Ni(II) on lotus stalks derived active carbon by phosphoric acid activation, Desalination, 268 (2011) 12–19.
  58. G. Xin, Y. Xia, Y. Lv, L. Liu, B. Yu, Investigation of mesoporous graphitic carbon nitride as the adsorbent to remove Ni(II) ions, Water Environ. Res., 88 (2016) 318–324.
  59. M.N. Siddiquia, H.H. Redhwib, A.A. Al-Saadia, M. Rajeha, T.A. Saleh, Kinetic and computational evaluation of activated carbon produced from rubber tires toward the adsorption of nickel in aqueous solutions, Desal. Wat. Treat., 57 (2016) 17570–17578.
  60. S. Pap, J. Radonic, S. Trifunovic, D. Adamovic, I. Mihajlovic, M.V. Miloradov, M.T. Sekulic, Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes, J. Environ. Manage., 184 (2016) 297–306.
  61. M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin, J. Hazard. Mater., 177 (2010) 962–970.