1. T. Younos, Environmental issues of desalination, J. Contemp. Water Res. Educ., 132 (2005) 11–18.
  2. A.S. Sánchez, I.B.R. Nogueira, R.A. Kalid, Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops, Desalination, 364 (2015) 96–107.
  3. P. Dama-Fakir, A. Toerien, Evaporation Rates on Brine Produced During Membrane Treatment of Mine Water, International Mine Water Conference, Pretoria, South Africa, 2009, pp. 19–23.
  4. J.W. Wu, M.J. Biggs, E.J. Hu, Dynamic model for the optimization of adsorption-based desalination processes, Appl. Therm. Eng., 66 (2014) 464–473.
  5. K. Thu, B.B. Saha, K.J. Chua, K.C. Ng, Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination, Int. J. Heat Mass Transfer, 101 (2016) 1111–1122.
  6. J.S. Ho, Z. Ma, J. Qin, S.H. Sim, C.S. Toh, Inline coagulation–ultrafiltration as the pretreatment for reverse osmosis brine treatment and recovery, Desalination, 365 (2015) 242–249.
  7. M. Naimi, C. Innocent, D.E. Akretche, Chloride behavior in electromembrane treatment of brine issued from desalination plants, J. Appl. Electrochem., 40 (2010) 1079–1083.
  8. M.M.A. Rayan, B. Djebedjian, Advances in Desalination Technologies: Solar Desalination, Potable Water, Springer International Publication, Switzerland, 2014, pp. 181–211.
  9. J.A. du Plessis, A.J. Burger, C.D. Swartz, N. Musee, A Desalination Guide for South African Municipal Engineers, WRC Report No. TT 266/06, Water Research Commission, Pretoria, South Africa, 2006.
  10. M.B. Zenouz, Desalination water with surfactant a new method with clear vision, Nat. Sci., 42 (2009) 86.
  11. I. Cohen, E. Avraham, A. Soffer, D. Aurbach, Water desalination by capacitive deionization-advantages limitations and modification, ECS Trans., 45 (2013) 43–59.
  12. X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol., 43 (2009) 7148–7152.
  13. H. Li, L. Zou, Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 275 (2011) 62–66.
  14. J.R. Ziolkowska, Is desalination affordable?—Regional cost and price analysis, Water Resour. Manage., 29 (2015) 1385–1397.
  15. A.S. Alsaman, A.A. Askalany, K. Harby, M.S. Ahmed, A state of the art of hybrid adsorption desalination–cooling systems, Renew. Sustain. Energy Rev., 58 (2016) 692–703.
  16. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  17. K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Adsorption desalination: an emerging low-cost thermal desalination method, Desalination, 308 (2013) 161–179.
  18. M.R. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J., 303 (2016) 539–546.
  19. Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination, Nanoscale, 8 (2016) 117–119.
  20. S. Jeong, H. Chung, T. Yoon, S. Lee, Scalants removal from synthetic RO brine using natural zeolite, J. Korean Soc. Water Wastewater, 30 (2016) 279–284.
  21. F. Le Formal, M. Grätzel, K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater., 20 (2010) 1099–1107.
  22. E. Ghasemi, A. Heydari, M. Sillanpää, Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples, Microchem. J., 131 (2017) 51–56.
  23. S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tanga, Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nanoadsorbents: behaviors and mechanisms, Appl. Surf. Sci., 393 (2017) 457–466.
  24. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  25. A.L. Ahmad, S.S. Wong, T.T. Teng, A. Zuhairi, Optimization of coagulation–flocculation process for pulp and paper mill effluent by response surface methodological analysis, J. Hazard. Mater., 145 (2007) 162–168.
  26. F. Ghorbani, H. Younesi, S.M. Ghasempouri, A.A. Zinatizadeh, M. Amini, A. Daneshi, Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae, Chem. Eng. J., 145 (2008) 267–275.
  27. L.V.A. Reddy, Y.J. Wee, J.S. Yun, H.W. Ryu, Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches, Bioresour. Technol., 99 (2008) 2242–2249.
  28. C. Chellamboli, M. Perumalsamy, Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system, RSC Adv., 4 (2014) 22129–22140.
  29. N. Panda, H. Sahoo, S. Mohapatra, Decolourization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite, J. Hazard. Mater., 185 (2011) 359–365.
  30. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  31. K.G. Bhattacharyya, A. Sarma, Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder, Dyes Pigm., 7 (2003) 211–222.
  32. P.N. Nomngongo, J.C. Ngila, T.A. Msagati, B. Moodley, Kinetics and equilibrium studies for the removal of cobalt, manganese, and silver in ethanol using Dowex 50W-x8 cation exchange resin, Sep. Sci. Technol., 49 (2014) 1848–1859.
  33. H.M.F. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  34. H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  35. M.A. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George, B. Meroufel, Adsorption of Cu(II) on maghnite from aqueous solution: effects of pH, initial concentration, interaction time and temperature, Nat. Sci., 4 (2012) 856.
  36. H. Zheng, Y. Wang, Y. Zheng, H. Zhang, S. Liang, M. Long, Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite, Chem. Eng. J., 143 (2008) 117–123.
  37. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim. URSS, 12 (1940) 217–222.
  38. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  39. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  40. F. Ghomri, A. Lahsini, A. Laajeb, A. Addaou, The removal of heavy metal ions (copper, zinc, nickel and cobalt) by natural bentonite, Larhyss J., 12 (2013) 37–54. ISSN 1112-3680.
  41. K.Z. Setshedi, M. Bhaumik, S. Songwane, M.S. Onyango, A. Maity, Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J., 222 (2013) 186–197.
  42. M. Sadeghi, M. Irandoust, F. Khorshidi, M. Feyzi, F. Jafari, T. Shojaeimehr, M. Shamsipur, Removal of Arsenic (III) from natural contaminated water using magnetic nanocomposite: kinetics and isotherm studies, J. Iran. Chem. Soc., 13 (2016) 1175–1188.
  43. Z. Chen, J. Zhang, J. Fu, M. Wang, X. Wang, R., Han, Q. Xu, Adsorption of methylene blue onto poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis, J. Hazard. Mater., 273 (2014) 263–271.
  44. E. Hettiarachchi, R. Perera, A.D.L. Chandani Perera, N. Kottegoda, Activated coconut coir for removal of sodium and magnesium ions from saline water, Desal. Wat. Treat., 57 (2016) 22341–22352.
  45. A.K. Mishra, S. Ramaprabhu, Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater, J. Phys. Chem. C, 114 (2010) 2583–2590.
  46. A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination, 282 (2011) 39–45.
  47. A.K. Mishra, S. Ramaprabhu, The role of functionalised multiwalled carbon nanotubes based supercapacitor for arsenic removal and desalination of sea water, J. Exp. Nanosci., 7 (2012) 85–97.