1. D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 composite as a photocatalyst for degradation of methylene blue, Procedia Chem., 17 (2015) 49–54.
  2. O. Ola, M.M. Maroto-Valer, Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction, Appl. Catal., A, 502 (2015) 114–121.
  3. E. Beyers, P. Cool, E.F. Vansant, Stabilisation of mesoporous TiO2 by different bases influencing the photocatalytic activity, Microporous Mesoporous Mater., 99 (2007) 112–117.
  4. A.K. Aboul-Gheit, S.M. Ahmed, Homogeneous and heterogeneous kinetics of the photocatalytic degradation of hydrocarbons in water, Egypt. J. Pet., 10 (2001) 65–69.
  5. M.H. Zhou, J.G. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method, J. Hazard. Mater., 137 (2006) 1838–1847.
  6. L. Haibin, L. Guocong, C. Shuguang, L. Qicheng, Novel Fe doped mesoporous TiO2 microspheres: ultrasonichydrothermal synthesis, characterization, and photocatalytic properties, Physica E, 42 (2010) 1844–1849.
  7. L.G. Devi, N. Kottam, B. Narasimha Murthy, S.G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A: Chem., 328 (2010) 44–52.
  8. A.K. Aboul-Gheit, S.M. El-Sayed, S.M. Ahmed, Photocatalytic degradation of petroleum compounds from wastewater. Part 1: degradation of gas oil sing natural semiconductor catalyst, Egypt. J. Pet., 13 (2004) 17–21.
  9. G. Mamba, A. Mishra, Advances in magnetically separable photocatalysts: smart, recyclable materials for water pollution mitigation catalysts, Catalysts, 6 (2016) 79.
  10. Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590–594.
  11. M. Khairy, W. Zakaria, Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes, Egypt. J. Pet., 23 (2014) 419–426.
  12. A.K. Aboul-Gheit, D.S. El-Desouki, R.A. El-Salamony, Different outlet for preparing nano-TiO2 catalysts for the photodegradation of Black B dye in water, Egypt. J. Pet., 23 (2014) 339–348.
  13. N. Kazumoto, F. Yuichi, M. Naoya, T. Toshiki, O. Teruhisa, Development of an S-doped titania nanotube (TNT) siteselectively loaded with iron(III) oxide and its photocatalytic activities, Appl. Catal., B, 84 (2008) 584–590.
  14. J. Treml, K. Smejkal, Flavonoids as potent scavengers of hydroxyl radicals, Compr. Rev. Food Sci. Food Saf., 15 (2016) 720–738.
  15. Z. Jia, J. Miao, H.B. Lu, D. Habibi, W.C. Zhang, L.C. Zhang, Photocatalytic degradation and absorption kinetics of cibacron brilliant yellow 3G-P by nanosized ZnO catalyst under solar light, J. Taiwan Inst. Chem. Eng., 60 (2016) 267–274.
  16. S. Kwon, M. Fan, A.T. Cooper, H. Yang, Photocatalytic applications of micro- and nano-TiO2 in environmental engineering, Crit. Rev. Environ. Sci. Technol., 38 (2008) 197–226.
  17. S. Das, Photocatalytic nano-titanium dioxide for environmental application: an Overview, Int. J. Innovative Res. Sci. Eng. Technol., 5 (2016) 519–522.
  18. S. Kim, S. Hwang, W. Choi, Visible light active platinumion-doped TiO2 photocatalys, J. Phys. Chem. B, 109 (2005) 24260–24267.
  19. Y. Liu, H. Wang, Z. Wu, Characterization of metal dopedtitanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxide, J. Environ. Sci., 19 (2007) 1505–1509.
  20. D. Liu, Y. Fernández, O. Ola, S. Mackintosh, M. Maroto-Valer, C.M.A. Parlett, A.F. Lee, J.C.S. Wu, On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2, Catal. Commun., 25 (2012) 78–82.
  21. J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A: Chem., 216 (2004) 35–43.
  22. J.A. Navio, J.J. Testa, P. Djedjeian, J.R. Padron, D. Rodriguez, M.I. Litter, Iron-doped titania semiconductor powders prepared by a sol-gel method. Part II: photocatalytic properties, Appl. Catal., A, 178 (1999) 191–203.
  23. M.S. Nahar, K. Hasegawa, S. Kagaya, S. Kuroda, Comparative assessment of the efficiency of Fe doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions, Sci. Technol. Adv. Mater., 8 (2007) 286–291.
  24. Y. Yang, C. Tian, Synergistic effects of sulfation and Fe-doping on the photocatalysis of titania, Res. Chem. Intermed., 36 (2010) 889–895.
  25. M. Kang, Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol, J. Mol. Catal. A: Chem., 197 (2003) 173–183.
  26. R. Janes, L.J. Knightley, C.J. Harding, Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing, Dyes Pigm., 62 (2004) 199–212.
  27. S.M. Abdel-Azim, A.K. Aboul-Gheit, S.M. Ahmed, D.S. El-Desouki, M.S.A. Abdel-Mottaleb, Preparation and application of mesoporous nanotitania photocatalysts using different templates and pH media, Int. J. Photoenergy, 2014 (2014) 1–11.
  28. A.M. Badawi, S.A. Shaban, S.M. Ahmed, S.M.I. Morsy, A.Y. El-Naggar, Kinetics of TNT degradation in the presence of zero valent iron nanocatalyst, Egypt. J. Chem., 55 (2012) 339–353.
  29. F.V. Santos, E.B. Azevedo, G.L. Sant’Anna Jr., M. Dezotti, Photocatalysis as a tertiary treatment for petroleum refinery wastewaters, Braz. J. Chem. Eng., 23 (2006) 451–460.
  30. A.K. Aboul-Gheit, S.M. Ahmed, D.S. El-Desouki, N.E. Moustafa, S.M. Abdel-Azeem, Nanocrystalline Pt/TiO2 catalysts for 4-chlorophenol photocatalytic degradation, Egypt. J. Pet., 19 (2010) 45–58.
  31. P.P. Khirade, J.S. Kounsalye, A.R. Chavan, D. Sable, S.D. Birajdar, K.M. Jadhav, Effect of Fe3+ substitution on structural and magnetic properties of barium titanate nanoceramics, Bionano Front., 8 (2015) 154–156.
  32. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, 32 (1976) 751–767.
  33. N. Šijakovic-Vujičić, M. Gotić, S. Musić, M. Ivanda, S. Popović, Synthesis and microstructural properties of Fe-TiO2 nanocrystalline particles obtained by a modified sol-gel method, J. Sol-Gel Sci. Technol., 30 (2004) 5–19.
  34. O.Y. Wu, I.P. Parkin, G. Hyett, A neutron diffraction study of oxygen and nitrogen ordering in a kinetically stable orthorhombic iron doped titanium oxynitride, J. Solid State Chem., 190 (2012) 169–173.
  35. N. Toshima, T. Yonezawa, Bimetallic nanoparticles-novel materials for chemical and physical applications, New J. Chem., 22 (1998) 1179–1201.
  36. C.Y. Wang, D.W. Bahnemann, J.K. Dohrmann, A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity, Chem. Commun., 16 (2000) 1539–1540.
  37. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlope, J.W.J. Hamiltone, J.A. Byrnee, K. O’Sheaf, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  38. Y.H. Peng, G.F. Huang, W.Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films, Adv. Powder Technol., 23 (2012) 8–12.
  39. Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9 (2014) 46–53.
  40. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115 (2011) 13211–13241.
  41. N.N. Mahamuni, A.B. Pandit, Effect of additives on ultrasonic degradation of phenol, Ultrason. Sonochem., 13 (2006) 165–174.
  42. J. Wang, Z. Jiang, L. Zhang, P. Kang, Y. Xie, Y. Lv, R. Xu, X. Zhang, Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation, Ultrason. Sonochem., 16 (2009) 225–231.
  43. A.D. Paola, G. Marcı, L. Palmisano, M. Sciavello, K. Uosaki, S. Ikeda, B. Ohtani, Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol, J. Phys. Chem. B, 106 (2002) 637–645.
  44. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98 (1994) 13669–13679.
  45. K.T. Ranjit, B. Viswanathan, Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem. Photobiol., A, 108 (1997) 79–84.
  46. P. Kokila1, V. Senthilkumar, K. PremNazeer, Preparation and photocatalytic activity of Fe3+-doped TiO2 nanoparticles, Arch. Phys. Res., 2 (2011) 246–253.
  47. M. Zhou, J. Yu, B. Cheng, H. Yu, Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts, Mater. Chem. Phys., 93 (2005) 159–163.
  48. K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Physica B, 405 (2010) 221–226.
  49. M.J. Liou, M.C. Lu, J.N. Chen, Oxidation of TNT by photo-Fenton process, Chemosphere, 57 (2004) 1107–1114.