1. Z. He, A. Zhou, C. Yang, Z. Guo, A. Wang, W. Liu, J. Nan, Toward bioenergy recovery from waste activated sludge: improving bio-hydrogen production and sludge reduction by pretreatment coupled with anaerobic digestion-microbial electrolysis cells, RSC Adv., 5 (2015) 48413–48420.
  2. A. Zhou, J. Du, C. Varrone, Y. Wang, A. Wang, W. Liu, VFAs bioproduction from waste activated sludge by coupling pretreatments with Agaricus bisporus substrates conditioning, Process Biochem., 49 (2014) 283–289.
  3. D. Wang, Y. Liu, H.H. Ngo, Z. Chang, Y. Qi, P. Lai, D. He, G. Zeng, X. Li, B.J. Ni, Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation, Bioresour Technol., 238 (2017).
  4. Q. Xu, X. Li, R. Ding, D. Wang, Y. Liu, Q. Wang, J. Zhao, C. Fei, G. Zeng, Y. Qi, Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge, Water Res., 124 (2017) 269.
  5. Y. Wang, D. Wang, Y. Liu, Q. Wang, F. Chen, Q. Yang, X. Li, G. Zeng, H. Li, Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge, Water Res., 127 (2017) 150.
  6. L. Lu, D. Xing, B. Liu, N. Ren, Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells, Water Res., 46 (2012) 1015–1026.
  7. G. Zhuo, Y. Yan, X. Tan, X. Dai, Q. Zhou, Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature, J. Biotechnol., 159 (2012) 27–31.
  8. H. Ge, P.D. Jensen, D.J. Batstone, Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge, Water Res., 45 (2011) 1597–1606.
  9. X. Li, J. Zhao, D. Wang, Q. Yang, Q. Xu, Y. Deng, W. Yang, G. Zeng, An efficient and green pretreatment to stimulate shortchain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid, Chemosphere, 144 (2016) 160–167.
  10. C. Yang, A. Zhou, Y. Hou, X. Zhang, Z. Guo, A. Wang, W. Liu, Optimized culture condition for enhancing lytic performance of waste activated sludge by Geobacillus sp. G1, Water Sci. Technol., 70 (2014) 200–208.
  11. J. Zhao, L. Gui, Q. Wang, Y. Liu, D. Wang, B.J. Ni, X. Li, R. Xu, G. Zeng, Q. Yang, Aged refuse enhances anaerobic digestion of waste activated sludge, Water Res., 123 (2017) 724.
  12. L. Guo, J. Zhao, Z. She, M. Lu, Y. Zong, Effect of S-TE (solubilization by thermophilic enzyme) digestion conditions on hydrogen production from waste sludge, Bioresour Technol., 117 (2012) 368–372.
  13. C. Yang, W. Liu, Z. He, S. Thangavel, L. Wang, A. Zhou, A. Wang, Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1: Acceleration on waste activated sludge hydrolysis and acidification, Bioresour Technol., 175 (2015) 509–516.
  14. Q. Yang, K. Luo, X.-m. Li, Y. Zhong, H.-b. Chen, G.-j. Yang, Y.-w. Shi, G.-m. Zeng, Solubilization of waste activated sludge and nitrogenous compounds transformation during solubilization by thermophilic enzyme (S-TE) process, Appl. Biochem. Biotech., 176 (2015) 700–711.
  15. Y. Tang, Y.-l. Yang, X.-m. Li, Q. Yang, D.-b. Wang, G.-m. Zeng, The isolation, identification of sludge-lysing thermophilic bacteria and its utilization in solubilization for excess sludge, Environ. Technol., 33 (2012) 961–966.
  16. S. Yan, K. Miyanaga, X.H. Xing, Y. Tanji, Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge, Biochem. Eng. J., 39 (2008) 598–603.
  17. P. Foladori, S. Tamburini, L. Bruni, Bacteria permeabilisation and disruption caused by sludge reduction technologies evaluated by flow cytometry, Water Res., 44 (2010) 4888–4899.
  18. M. Hery, H. Sanguin, S. Perez Fabiel, X. Lefebvre, T.M. Vogel, E. Paul, S. Alfenore, Monitoring of bacterial communities during low temperature thermal treatment of activated sludge combining DNA phylochip and respirometry techniques, Water Res., 44 (2010) 6133–6143.
  19. Y. Chen, S. Jiang, H. Yuan, Q. Zhou, G. Gu, Hydrolysis and acidification of waste activated sludge at different pHs, Water Res., 41 (2007) 683–689.
  20. A. Zhou, C. Yang, F. Kong, L. D., Z. Chen, N. Ren, A. Wang, Improving the short-chain fatty acids production of waste activated sludge stimulated by a bi-frequency ultrasonic pretreatment, J. Environ. Biol., 34 (2013) 381–389.
  21. A. Zhou, Z. Guo, C. Yang, F. Kong, W. Liu, A. Wang, Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion, J. Biotechnol., 168 (2013) 234–239.
  22. L. Wang, W. Liu, L. Kang, C. Yang, A. Zhou, A. Wang, Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis, Int. J. Hydrogen Energ., 39 (2014) 11913–11919.
  23. R. Bro, H.A.L. Kiers, A new efficient method for determining the number of components in PARAFAC models, J. Chemometr., 17 (2003) 274–286.
  24. M.A. Sanchez-Monedero, C. Mondini, M.L. Cayuela, A. Roig, M. Contin, M. De Nobili, Fluorescein diacetate hydrolysis, respiration and microbial biomass in freshly amended soils, Biol. Fert. Soils, 44 (2008) 885–890.
  25. S. Liu, N. Zhu, L.Y. Li, H. Yuan, Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge, Water Res., 45 (2011) 5959–5968.
  26. M.C.M. Van Loosdrecht, M. Henze, Maintenance, endogeneous respiration, lysis, decay and predation, Water Sci. Technol., 39 (1999) 107–117.
  27. G.-H. Yu, P.-J. He, L.-M. Shao, Y.-S. Zhu, Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment, Water Res., 42 (2008) 1925– 1934.
  28. K. Luo, Q. Yang, X.-m. Li, H.-b. Chen, X. Liu, G.-j. Yang, G.-m. Zeng, Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy, Chemosphere, 91 (2013) 579–585.
  29. Z.-W. He, C.-C. Tang, L. Wang, Z.-C. Guo, D. Sun, W.-Z. Liu, A.-J. Wang, Phosphorus release of various component species from waste activated sludge during sequential acid- alkaline treatment, RSC Adv., 7 (2017) 35340–35345.
  30. Z.W. He, W.Z. Liu, L. Wang, C.C. Tang, Z.C. Guo, C.X. Yang, A.J. Wang, Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment, Biores. Technol., 222 (2016) 217.
  31. Z. Guo, A. Zhou, C. Yang, B. Liang, T. Sangeetha, Z. He, L. Wang, W. Cai, A. Wang, W. Liu, Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: carbon source composition regulates community functions, Biotechnol. Biofuels, 8 (2015) 192.
  32. Z.W. He, C.X. Yang, L. Wang, Z.C. Guo, A.J. Wang, W.Z. Liu, Feasibility of short-term fermentation for short-chain fatty acids production from waste activated sludge at initial pH10: Role and significance of rhamnolipid, Chem. Eng. J., 290 (2016) 125–135.
  33. N.P. Sanchez, A.T. Skeriotis, C.M. Miller, Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation–filtration in a full scale water treatment plant, Water Res., 47 (2013) 1679–1690.
  34. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37 (2003) 5701–5710.
  35. G.-H. Yu, P.-J. He, L.-M. Shao, Novel insights into sludge dewaterability by fluorescence excitation–emission matrix combined with parallel factor analysis, Water Res., 44 (2010) 797–806.
  36. A. Cadoret, A. Conrad, J.C. Block, Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges, Enzyme Microb. Tech., 31 (2002) 179–186.
  37. W. Jie, Y. Peng, N. Ren, B. Li, Utilization of alkali-tolerant stains in fermentation of excess sludge, Biores. Technol., 157 (2014) 52–59.
  38. W. Liu, S. Huang, A. Zhou, G. Zhou, N. Ren, A. Wang, G. Zhuang, Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge, Int. J. Hyd. Energ., 37 (2012) 13859–13864.
  39. Z. Liu, Y. Wang, N. He, J. Huang, K. Zhu, W. Shao, H. Wang, W. Yuan, Q. Li, Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis, J. Hazard. Mater., 185 (2011) 8–16.
  40. Y. Yan, L. Feng, C. Zhang, C. Wisniewski, Q. Zhou, Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0, Water Res., 44 (2010) 3329–3336.
  41. C. Yang, Z. He, Z. Guo, A. Zhou, A. Wang, W. Liu, Effects of temperature on hydrolysis performance and short-chain fatty acids production during thermophilic micro-aerobic fermentation of waste activated sludge, Desal. Water Treat., (2015) 1–7.
  42. W. Liu, Z. He, C. Yang, A. Zhou, Z. Guo, B. Liang, C. Varrone, A.J. Wang, Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation, Biotechnol. Biofuels, 9 (2016) 83.
  43. C. Yang, A. Zhou, Z. He, L. Jiang, Z. Guo, A. Wang, W. Liu, Effects of ultrasonic-assisted thermophilic bacteria pretreatment on hydrolysis, acidification, and microbial communities in waste-activated sludge fermentation process, Environ. Sci. Pollut. Res., 22 (2015) 9100–9109.
  44. H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: A review, J. Hazard. Mater., 183 (2010) 1–15.