References

  1. W. Tang, B. Shan, H. Zhang, W. Zhang, Y. Zhao, Y. Ding, N. Rong, X. Zhu, Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China, Sci. Rep., 4 (2014) 7152–7161.
  2. B. Mansouri, R. Baramaki, M. Ebrahimpour, Acute toxicity bioassay of mercury and silver on Capoeta fusca, Toxicol. Ind. Health., 28 (2012) 393–398.
  3. E. Hoshyari, A. Pourkhabbaz, B. Mansouri, Contaminations of metal in tissues of Siberian gull (Larus heuglini): gender, age, and tissue differences, Bull. Environ. Contamin. Toxicol., 89 (2012) 102–106.
  4. P. Swain, S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K. Swain, S.S. Mishra, A.K. Sen, J.K. Das, P. Jayasankar, Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture, World. J. Microbiol. Biotechnol., 30 (2014) 2491–2502.
  5. L. Peng, F. Xinbin, Y. Qiongzhi, G, Xuefei, X. Jialin, W. Minghung, C. Peter, W. Sheng-Chun, The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem, Environ. Sci. Pollut. Res., 24 (2017) 25923–25932.
  6. L. Peng, G. Xuefei, Y. Qiongzhi, Z. Jin, C. Yucheng, Z. Chan, W. Ming-Hung, W. Sheng-Chun, Role of mariculture in the loading and speciation of mercury at the coast of the East China, Sea. Environ. Pollut., 218 (2016) 1037–1044.
  7. M. Ebrahimpour, M. Mosavisefat, R. Mohabbati, Acute toxicity bioassay of mercuric chloride: An alien fish from a river, Toxicol. Environ. Chem., 92 (2010) 169–173.
  8. L.R. Skubal, N.K. Meshkov, Reduction and removal of mercury from water using arginine-modified TiO2, J. Photochem. Photobiol. A: Chem., 148 (2002) 211–14.
  9. Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebra fish embryos-larvae, Aquat. Toxicol., 181 (2016) 76–85.
  10. Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Reproductive toxicity of inorganic mercury exposure in adult zebra fish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis, Aquat. Toxicol., 177 (2016) 417–424.
  11. S. Chernousova, M. Epple, Silver as antibacterial agent: Ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52 (2013) 1636–1653.
  12. C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, In vivo real-time visualization of tissue blood flow and angio genesis using Ag2S quantum dots in the NIR-II window, Biomaterials, 35 (2014) 393–400.
  13. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria, J. Colloid. Interface. Sci., 275 (2004) 177–182.
  14. H.S. Jiang, L. Yin, N.N. Ren, L. Xian, S. Zhao, W.L.B. Gontero, The effects of chronic silver nanoparticles on aquatic system in microcosms, Environ. Pollut., 223 (2017) 395–402.
  15. C. Lorenz, L. Windler, N. von Goetz, R.P. Lehmann, M. Schuppler, K. Hungerbuhler, M. Heuberger, B. Nowack, Characterization of silver release from commercially available functional (nano) textiles, Chemosphere, 89 (2012) 817–824.
  16. T. Kunniger, A.C. Gerecke, A. Ulrich, A. Huch, R. Vonbank, M. Heeb, A. Wichser, R. Haag, P. Kunz, M. Faller, Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden facades, Environ. Pollut., 184 (2014) 464–471.
  17. D.K. Tripathi, A. Tripathi, S. Singh, Y. Singh, K. Vishwakarma, G. Yadav, S. Sharma, V.K. Singh, R.K. Mishra, R.G. Upadhyay, N.K. Dubey, Y. Lee, D.K. Chauhan, Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review, Front. Microbiol., 8 (2017) 1–16.
  18. J.H. Kim, J.S. Lee, J.C. Kan, Effect of inorganic mercury on hematological and antioxidant parameters on olive flounder Paralichthys olivaceus, Fish. Aquat. Sci., 15 (2012) 215–220.
  19. T. Cappello, P. Pereira, M. Maisano, A. Mauceri, M. Pacheco, S. Fasulo, Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics, Environ. Pollut., 219 (2016) 139–148.
  20. G. Laban, L.F. Nies, R.F. Turco, J.W. Bickham, M.S. Sepulveda, The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos, Ecotoxicol., 19 (2010) 185–195.
  21. L. Murray, M.D. Rennie, E.C. Enders, K. Pleskach, J.D. Martin, Effect of nanosilver on cortisol release and morphometrics in rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem., 36 (2015) 1606–1613.
  22. I. Kim, B.T. Lee, H.A. Kim, K.W. Kim, S.D. Kim, Y.S. Hwang, Citrate coated silver nanoparticles change heavy metal toxicities and bio accumulation of Daphnia magna, Chemosphere, 143 (2016) 99–105.
  23. F.F. Cruz, C.E. Leite, T.C. Pereira, M.R. Bogo, C.D. Bonan, A.M. Battastini, M.M. Campos, F.B. Morrone, Assessment of mercury chloride-induced toxicity and the relevance of P2X7 receptor activation in zebra fish larvae, Comp. Biochem. Physiol. Part C, 158 (2013) 159–164.
  24. S. Abarghoei, A. Hedayati, R. Ghorbani, H.K. Miandareh, T. Bagheri, Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of gold fish Carassius auratus, Int. J. Environ. Sci. Technol., 13 (2016) 1753–1760.
  25. A. Kumar, B. Sharma, R.S. Pandey, Preliminary evaluation of the acute toxicity of cypermethrin and k-Cyhalothrin to Channa punctatus, Bull. Environ. Contamin. Toxicol., 79 (2007) 613–616.
  26. B. Mansouri, A, Maleki, S.A. Johari, N, Reshahmanish, Effects of cobalt oxide nanoparticles and cobalt ions on gill histopathology of zebra fish (Danio rerio), AACL Bioflux., 8 (2015) 438–444.
  27. B. Mansouri, A. Maleki, S.A. Johari, B. Shahmoradi, E. Mohammadi, S. Shahsavari, B. Davari, Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles, Chem. Ecol., 4 (2017) 295–308.
  28. L. Flohé, W.A. Günzler, Assay of glutathione peroxidase, Methods. Enzymol., 105 (1984) 115–121.
  29. J.M. McCord, J. Fridovich, Super oxide dismutase: an enzymatic function for erythrocuprein (hemocuprein), J. Biol. Chem., 244 (1969) 6049–6055.
  30. P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex, specific application to the determination of vitamin E, Ann. Biochem., 26 (1999) 337–341.
  31. B.Z.W. Vila, J.R.R. Marquardt, A.A. Frohlich, Effect of T-2 toxin on in vivo lipid peroxidation and vitamin E status in mice, Food Chem. Toxicol., 40 (2002) 479–486.
  32. T. Frankic, T. Pajk, V. Rezar, A. Levart, J. Salobir, The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes, Food. Chem. Toxicol., 44 (2006) 1838–1844.
  33. F. Majnoni, B. Mansouri, M.R. Rezaei, A.H. Hamidian, Contaminations of metals in tissues of common carp, Cyprinus carpio and silver carp, Hypophthalmichthys molitrix from Zarivar wetland, western Iran, Arch. Polish. Fish, 21 (2013) 11–18.
  34. B.K. Greenfield, S.J. Teh, J.R.M. Ross, J. Hunt, G.H. Zhang, J.A. Davis, G. Ichikawa, D. Crane, S.S.O. Hung, D.F. Deng, F.C. Teh, P.G. Green, Contaminant concentrations and histopathological effects in Sacramento splittail (Pogonichthys macrolepidotus), Arch. Environ. Contamin. Toxicol., 55 (2008) 270–281.
  35. V. Poleksic, M. Lenhardt, I. Jaric, D. Djordjevic, Z. Gacic, G. Cvijanovic, B. Raskovic, Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758), Environ. Toxicol. Chem., 29 (2010) 515–521.
  36. Y. Wu, Q. Zhou, Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure, Environ. Toxicol. Chem., 32 (2013) 165–173.
  37. W. Jiraungkoorskul, S. Sshaphong, N. kangwanrangsan, M. Kim, Histopathological study: the effect of ascorbic acid on cadmium exposure in fish (Puntius altus), J. Fish. Aquat. Sci., 1 (2006) 191–199.
  38. R. Macirella, E. Brunelli, Morpho functional alterations in zebra fish (Danio rerio) gills after exposure to mercury chloride, Int. J. Mol. Sci., 18 (2017) 824–842.
  39. C.A. de Oliveira Ribeiro, L. Belger, E. Pelletier, C. Rouleau, Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus), Environ. Res., 90 (2002) 217–222.
  40. R. Fracário, N.F. Verani, E.L.G. Espíndola, O Rocha, O Rigolin- Sá, C.A. Andrade, Alterations on growth and gill morphology of Danio rerio (pisces, ciprinidae) exposed to the toxic sediments, Brazil, Arc. Biol. Technol., 46 (2003) 685–695.
  41. T. Wang, X. Long, Z. Liu, Y. Cheng, S. Yan, A Comparison effect of copper nanoparticles versus copper sulphate on Juvenile Epinephelus coioides: growth parameters, digestive enzymes, body composition, and histology as biomarkers, Int. J. Genom., 2015 (2015) 1–10.
  42. E.F. Pane, A. Haque, C.M. Wood, Mechanistic analysis of acute, Niinduced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon, Aquat. Toxicol., 69 (2004) 11–24.
  43. S. Pereira, L.A. Pinto, R. Cortes, A. Fontanhas-Fernandes, A. M. Coimbra, S.M. Monteiro, Gill histopathological and oxidative stress evaluation in native fish captured in Portuguese northwestern rivers, Ecotoxicol Environ. Safe, 90 (2013)157–166.
  44. D.M.S. Santos, M.R.S. Melo, D.C.S. Mendes, I.K.B.S. Rocha, J.P.L. Silva, S.M. Cantanhêde, P.C. Meletti, Histological changes in gills of two fish species as indicators of water quality in Jansen Lagoon (São Luís, Maranhão State, Brazil), Int. J. Environ. Res. Public. Health, 11 (2014) 12927–12937.
  45. G.A. Al-Bairuty, B.J. Shaw, R.D. Handy, T.B. Henry, Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 126 (2013) 104–115.
  46. K.S. Rajkumar, N. Kanipandian, R. Thirumurugan, Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita, Appl. Nanosci., 6 (2016) 19–29.
  47. T. Ostaszewska, M. Chojnacki, M. Kamaszewski, E. Sawosz-Chwalibóg, Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon, Environ. Sci. Pollut. Res., 23 (2016) 1621–1633.
  48. G. Sener, A.O. Sehirli, G. Ayanoglu-Dülger, Melatonin protects against mercury (II)-induced oxidative tissue damage in rats, Pharmacol. Toxicol., 93 (2003) 290–296.
  49. D.A. Monteiro, F.T. Rantin, A.L. Kalinin, Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus, Ecotoxicol., 22 (2013) 446–456.
  50. X.N. Verlecar, K.B. Jena, G.B. Chainy, Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature, Chem. Biol. Interact., 167 (2007) 219–226.
  51. N.J. Miller, C.A. Rice-Evans, Factors influencing the antioxidant activity determined by the ABTS radical cation assay, Free. Radic. Res., 26 (1997) 195–199.
  52. E.O. Oruç, N. Uner, Marker enzyme assessment in the liver of Cyprinus carpio (L) exposed to 2,4-D and azinphosmethyl, J. Biochem. Mol. Toxicol., 16 (2002) 182–188.
  53. R. Thirumavalavan, Effect of mercury on lipid peroxidation and antioxidants in gill tissue of fresh water fish, labeo rohita, Ijrsr, 5 (2010) 122–124.
  54. A. Margarat, G. Jagadeesan, S. Sethupathy, Comparative effect of penicillamine and taurine on mercury poisoned mice, Mus musculus, Pollut. Res., 20 (2001) 1–4.
  55. J.L. Franco, H.C. Braga, A.K.C. Nunes, C.M. Ribas, A.P. Silva, Lactational exposure to inorganic mercury: evidence of neurotoxic effects, Neurobehav. Toxicol. Teratol., 29 (2007) 360–367.
  56. P.C. Pickhardt, M. Stepanova, N.S. Fisher, Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquito fish (Gambusia affinis) and redear sunfish (Lepomis microlophus), Environ. Toxicol. Chem., 25 (2006) 2132–2142.
  57. R. Wang, W.X. Wang, Importance of speciation in understanding mercury bioaccumulation in tilapia controlled by salinity and dissolved organic matter, Environ. Sci. Technol., 44 (2010) 7964–7969.
  58. A. Boudou, F. Ribeyre, Experimental study of trophic contamination of Salmo gairdneri by two mercury compounds—HgCl2 and CH3HgCl — Analysis at the organism and organ levels, Water. Air. Soil. Pollut., 26 (1985) 137–148.
  59. E. Sumesh, M.S. Bootharaju, A.T. Pradeep, A practical silver nanoparticle based adsorbent for the removal of Hg2+ from water, J. Hazard. Mater., 189 (2011) 450–457.
  60. K.V. Katok, R.L. Whitby, T. Fukuda, T. Maekawa, I. Bezverkhyy, S.V. Mikhalovsky, Hyperstoichiometric interaction between silver and mercury at the nanoscale, Angew. Chem. Int. Ed. Engl., 51 (2012) 2632–2635.
  61. T. Yordanova, P. Vasileva, I. Karadjova, D. Nihtianova, Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters, Analyst., 139 (2014) 1532–1540.