References

  1. D. Karadag, O.E. Köroğlu, B. Ozkaya, M. Cakmakci, A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater, Process Biochem., 50 (2015) 262–271.
  2. W. Qasim, A.V. Mane, Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques, Water Resour. Ind., 4 (2013) 1–12.
  3. W. Janczukowicz, M. Zieliński, M. Dębowski, Biodegradability evaluation of dairy effluents originated in selected sections of dairy production, Bioresour. Technol., 99 (2008) 4199–4205.
  4. W. Dąbrowski, R. Żyłka, P. Malinowski, Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant, Environ. Res., 153 (2017) 135–139.
  5. A. Khursheed, R.Z. Gaur, M.K. Sharma, V.K. Tyagi, A.A. Khan, A.A.A. Kazmi, Dependence of enhanced biological nitrogen removal on carbon to nitrogen and rbCOD to sbCOD ratios during sewage treatment in sequencing batch reactor, J. Clean. Prod., 171 (2018) 1244–1254.
  6. J. Struk-Sokolowska, Changes of COD fractions share during municipal wastewater treatment with big dairy wastewater participation, Rocz. Ochr. Środowiska., 13 (2011) 2015–2032.
  7. H.M. van Veldhuizen, M.C.M. van Loosdrecht, J.J. Heijnen, Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process, Water Res., 33 (1999) 3459–3468.
  8. P.J. Roeleveld, M.C.M. van Loosdrecht, Experience with guidelines for wastewater characterisation in The Netherlands, Water Sci. Technol., 45 (2002) 77–87.
  9. Z. Dymaczewski, Charakterystyka frakcji organicznych ścieków miejskich pod kątem modelu osadu czynnego ASM2d [Analysis of organic fractions of municipal sewage according to activated sludge ASM2d model], Przem. Chem., 87 (2008) 440–442.
  10. W. Dąbrowski, M. Puchlik, Share of COD fractions in dairy wastewater in treatment plant using intensive removal of carbon, nitrogen and phosphorus, Annu. Set Environ. Prot., 12 (2010) 735–746.
  11. S. Xu, B. Hultman, Experiences in wastewater characterization and model calibration for the activated sludge process, Water Sci. Technol., 33 (1996) 89–98.
  12. A. Carucci, E. Rolle, P. Smurra, Management optimisation of a large wastewater treatment plant, Water Sci. Technol., 39 (1999) 129–136.
  13. M. Henze, W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel, G.v.R. Marais, M.C.M. Van Loosdrecht, Activated sludge model No.2d, ASM2D, Water Sci. Technol., 39 (1999) 165–182.
  14. D. Brdjanovic, M.C. van Loosdrecht, P. Versteeg, C.M. Hooijmans, G.J. Alaerts, J.J. Heijnen, Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder, Water Res., 34 (2000) 846–858.
  15. G. Koch, M. Kühni, W. Gujer, H. Siegrist, Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater, Water Res., 34 (2000) 3580–3590.
  16. J. Makinia, S.A. Wells, A general model of the activated sludge reactor with dispersive flow—I. model development and parameter estimation, Water Res., 34 (2000) 3987–3996.
  17. L. Rieger, G. Koch, M. Kühni, W. Gujer, H. Siegrist, The eawag bio-p module for activated sludge model no. 3, Water Res., 35 (2001) 3887–3903.
  18. P. Ginestet, A. Maisonnier, M. Spérandio, Wastewater COD characterization: biodegradability of physico-chemical fractions, Water Sci. Technol., 45 (2002) 89–97.
  19. M. Wichern, M. Lübken, R. Blömer, K.-H. Rosenwinkel, Efficiency of the activated sludge model no. 3 for german wastewater on six different WWTPs, Water Sci. Technol., 47 (2003) 211–218.
  20. K. Gernaey, S. Jørgensen, Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes, Control Eng. Pract., 12 (2004) 357–373.
  21. S. Myszograj, Z. Sadecka, COD fractions in mechanical-biological sewage treatment on the basis of sewage treatment plant In Sulechów, Annu. Set Environ. Prot., 6 (2004) 233–244.
  22. J. Makinia, K.-H. Rosenwinkel, V. Spering, Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP, Water Res., 39 (2005) 1489–1502.
  23. P. Quevauviller, O. Thomas, A. Van der Beken, eds., Wastewater quality monitoring and treatment, John Wiley & Sons, Ltd, 2006.
  24. Z. Dymaczewski, Charakterystyka frakcji organicznych ścieków miejskich pod kątem modelu osadu czynnego ASM2d, Przem. Chem., 87 (2008) 440–442.
  25. I. Pasztor, P. Thury, J. Pulai, Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment, Int. J. Environ. Sci. Technol., 6 (2009) 51–56.
  26. Z. Sadecka, E. Płuciennik-Koropczuk, Frakcje ChZT w modelach biokinetycznych, in: Oczyszcz. Ścieków I Przeróbka Osadów Ściekowych, 3rd ed., Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra, 2009.
  27. M. Zawilski, A. Brzeziriska, Variability of COD and TKN fractions of combined wastewater, Polish J. Environ. Stud., 18 (2009) 501–505.
  28. M. Huang, Y. Li, G. Gu, Chemical composition of organic matters in domestic wastewater, Desalination, 262 (2010) 36–42.
  29. J. Struk-Sokolowska, J. Wiater, J. Rodziewicz, Wastewater organic compounds characterization on the basis of COD fractions, Gaz, Woda I Tech. Sanit., (2016) 92–98.
  30. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th ed., Washington, USA, 1992.
  31. A. Stanisz, Podstawy statystyki dla prowadzących badania naukowe. Odcinek 21: Analiza korelacji. [The basics of statistics for conducting research. Episode 21: Correlation analysis], 10 (2000) 176–181.
  32. A. Khursheed, R.Z. Gaur, A. Bhatia, A.A. Khan, V.K. Tyagi, A.A. Kazmi, Role of volume exchange ratio and non-aeration time in spillage of nitrogen in continuously fed and intermittently decanted sequencing batch reactor, Chem. Eng. J., 191 (2012) 75–84.
  33. M. Zawilski, A. Brzezińska, Variability of COD and TKN fractions of combined wastewater, Polish J. Environ., 18 (2009) 501–505.
  34. I. Pasztor, P. Thury, J. Pulai, Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment, Int. J. Environ. Sci. Technol., 6 (2009) 51–56.
  35. K. Gernaey, S. Jørgensen, Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes, Control Eng. Pract., 12 (2004) 357–373.
  36. J. Rodziewicz, A. Mielcarek, W. Janczukowicz, A. Białowiec, A. Gotkowska-Płachta, M. Proniewicz, Ammonia nitrogen transformations in a reactor with aggregate made of sewage sludge combustion fly ash, Water Environ. Res., 88 (2016) 715–723.