References

  1. United States Environmental Protection Agency (USEPA), Water Health Series: Filtration Facts, in: Office of Ground Water and Drinking Water (Ed.), 2005.
  2. M. Peter-Varbanets, C. Zurbrügg, C. Swartz, W. Pronk, Decentralized systems for potable water and the potential of membrane technology, Water Res., 43 (2009) 245–265.
  3. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Res., 75 (2015) 164–187.
  4. W.L. Ang, A.W. Mohammad, N. Hilal, C.P. Leo, A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363 (2015) 2–18.
  5. H. Aslani, S. Nasseri, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, S. Nazmara, Haloacetic acids degradation by an efficient ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization, J. Environ. Manage., 203 (2017) 218–228.
  6. F. Wang, B. Gao, Q. Yue, F. Bu, X. Shen, Effects of ozonation, powdered activated carbon adsorption, and coagulation on the removal of disinfection by-product precursors in reservoir water, Environ. Sci. Pollut. R., (2017) 1–10.
  7. L. Yang, Q. She, M.P. Wan, R. Wang, V.W.-C. Chang, C.Y. Tang, Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration, Water Res., 116 (2017) 116–125.
  8. Z. Fan, S. Gong, X. Xu, X. Zhang, Y. Zhang, X. Yu, Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters, Int. J. Hyg. Envir. Heal., 217 (2014) 300–306.
  9. H. Amjad, I. Hashmi, M.S.U. Rehman, M.A. Awan, S. Ghaffar, Z. Khan, Cancer and non-cancer risk assessment of trihalomethanes in urban drinking water supplies of Pakistan, Ecotox. Environ. Eafe., 91 (2013) 25–31.
  10. A.W. Brown, P.S. Simone, J.C. York, G.L. Emmert, A device for fully automated on-site process monitoring and control of trihalomethane concentrations in drinking water, Anal. Chim. Acta, 853 (2015) 351–359.
  11. J. Grellier, L. Rushton, D.J. Briggs, M.J. Nieuwenhuijsen, Assessing the human health impacts of exposure to disinfection by-products—A critical review of concepts and methods, Environ. Int., 78 (2015) 61–81.
  12. S. Pan, W. An, H. Li, M. Su, J. Zhang, M. Yang, Cancer risk assessment on trihalomethanes and haloacetic acids in drinking water of China using disability-adjusted life years, J. Hazard. Mater., 280 (2014) 288–294.
  13. S. Tang, X.-m. Wang, H.-w. Yang, Y.F. Xie, Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation, Chemosphere, 90 (2013) 1563–1567.
  14. United States Environmental Protection Agency (USEPA), National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule, Final Rule. Federal Register, in, 2006.
  15. International Agency for Research on Cancer (IARC), Some drinking-water disinfectants and contaminants, including arsenic, in: Working Group on the Evaluation of Carcinogenic Risks to Human (Ed.), IARC, 2004.
  16. A. Dad, C.H. Jeong, E.D. Wagner, M.J. Plewa, Haloacetic acid water disinfection by-products affect pyruvate dehydrogenase activity and disrupt cellular metabolism, Environ. Sci. Technol., (2017).
  17. S.W. Krasner, M. Kostopoulou, M.B. Toledano, J. Wright, E. Patelarou, M. Kogevinas, C.M. Villanueva, G. Carrasco- Turigas, L. Santa Marina, A. Fernandez-Somoano, Occurrence of DBPs in drinking water of European regions for epidemiology studies, J. AWWA, 108 (2016) E501–E512.
  18. J. Lee, E.-S. Kim, B.-S. Roh, S.-W. Eom, K.-D. Zoh, Occurrence of disinfection by-products in tap water distribution systems and their associated health risk, Environ. Monit. Assess., 185 (2013) 7675–7691.
  19. P. Charisiadis, S.S. Andra, K.C. Makris, C.A. Christophi, D. Skarlatos, V. Vamvakousis, S. Kargaki, E.G. Stephanou, Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks, Sci. Total Environ., 506 (2015) 26–35.
  20. D. Stalter, E. O’Malley, U. von Gunten, B.I. Escher, Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water, Environ. Sci. Wat. Res., (2016).
  21. M. Fahiminia, M. Mosaferi, R.A. Taadi, M. Pourakbar, Evaluation of point-of-use drinking water treatment systems’ performance and problems, Desal. Water Treat., 52 (2014) 1855–1864.
  22. H. Piri-Moghadam, F. Ahmadi, J. Pawliszyn, A critical review of solid phase microextraction for analysis of water samples, TrAC-Trend. Anal. Chem., 85 (2016) 133–143.
  23. S.R. Huang, P.T. Palmer, Improving student understanding of qualitative and quantitative analysis via GC/MS using a rapid SPME-based method for determination of trihalomethanes in drinking water, J. Chem. Educ., 94 (2017) 1129–1132.
  24. D. Calderón-Preciado, J.M. Bayona, Development of an analytical procedure for the determination of trihalomethanes in leafy vegetable by headspace-SPME followed by GC-ECD determination, Food Anal. Method., 8 (2015) 1093–1100.
  25. World Health Organization (WHO), Guidelines for drinkingwater quality [electronic resource]: incorporating 1st and 2nd addenda, vol. 1, Recommendations, in, World Health Organization, 2008.
  26. World Health Organization (WHO), Guidelines for drinking- water quality, in, World Health Organization, Geneva, 2016.
  27. S.M. Ebrahimi, R. Dehghanzadeh Reihani, Z. Shiri, S.M. Mosavi, M.Y. Memar, Bacteriological quality of water produced by household water treatment devices, J. Mazandaran. Uni. Med. Sci., 25 (2015) 8–18.
  28. World Health Organization (WHO), Lead in drinking-water: background document for development of WHO guidelines for drinking-water quality, in, 2003.
  29. T. Ayenew, The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands, Environm. Geol., 54 (2008) 1313–1324.
  30. S.M.S. Mousavi, R. Dehghanzadeh, S.M. Ebrahimi, Comparative analysis of ozonation (O3) and activated carbon catalyzed ozonation (ACCO) for destroying chlorophyll a and reducing dissolved organic carbon from a eutrophic water reservoir, Chem. Eng. J., 314 (2017) 396–405.
  31. M.J. Rodriguez, J. Serodes, D. Roy, Formation and fate of haloacetic acids (HAAs) within the water treatment plant, Water Res., 41 (2007) 4222–4232.
  32. S.K. Golfinopoulos, A.D. Nikolaou, T.D. Lekkas, The occurrence of disinfection by-products in the drinking water of Athens, Greece, Environ. Sci. Pollut. R., 10 (2003) 368–372.
  33. S. Levesque, M.J. Rodriguez, J. Serodes, C. Beaulieu, F. Proulx, Effects of indoor drinking water handling on trihalomethanes and haloacetic acids, Water Res., 40 (2006) 2921–2930.
  34. S. Parvez, Z. Rivera-Núñez, A. Meyer, J.M. Wright, Temporal variability in trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water systems, Environ. Res., 111 (2011) 499–509.
  35. P. Pieri, S.S. Andra, P. Charisiadis, G. Demetriou, N. Zambakides, K.C. Makris, Variability of tap water residual chlorine and microbial counts at spatially resolved points of use, Environ. Eng. Sci., 31 (2014) 193–201.