1. Stockholm Convention, What are POPs? (2008) URL: Convention/The POPs/tabid/673/Default.aspx (accessed May 2017).
  2. EPA, Revised Human Health Risk Assessment on Chlorpyrifos (2015). URL: (accessed on May 2017).
  3. A.A. Sharbidre, V. Metkari, P. Patode, Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulata, Pestic. Biochem. Phys., 101 (2011) 132–141.
  4. K. Pelentridou, E. Stathatos, H. Karasali, P. Lianos, Photo degradation of the herbicide azimsulfuron using nano crystalline titania films as photo catalyst and low intensity black light radiation or simulated solar radiation as excitation source, J. Hazard. Mater., 163 (2009) 756–760.
  5. M. Hoseini, R. Nabizadeh, S. Nazmara, G.H. Safari, Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process, J. Environ. Health Sci., 11 (2013) 38.
  6. M. Hoseini, G.H. Safari, H. Kamani, J. Jaafari, M. Ghanbarain, A.H. Mahvi, Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis, Toxicol. Environ. Chem., 95 (2013) 1680–1689.
  7. M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki, N. Hioka, Combined electro coagulation and TiO2 photo assisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries, J. Hazard. Mater., 162 (2009) 448–454.
  8. M. Ismail, H.M. Khan, M. Sayed, W.J. Cooper, Advanced oxidation for the treatment of chlorpyrifos in aqueous solution, Chemosphere, 93 (2013) 645–651.
  9. A. Amalraj, A. Pius, Photo catalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation, J. Water Process. Eng., 7 (2015) 94–101.
  10. M. Yadav, N. Srivastva, R.S. Singh, S.N. Upadhyay, S.K. Dubey, Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor, Bioresour. Technol., 165 (2014) 265–269.
  11. J.A. Zimbron, K.F. Reardon, Fenton’s oxidation of pentachlorophenol, Water Res., 43 (2009) 1831–1840.
  12. R. Khan, S.W. Kim, T.-J. Kim, C.-M. Nam, Comparative study of the photo catalytic performance of boron–iron Co-doped and boron-doped TiO2 nano particles, Mater. Chem. Phys., 112 (2008) 167–172.
  13. L. Lopez, W. Daoud, D. Dutta, Preparation of large scale photo catalytic TiO2 films by the sol–gel process, Surf. Coat. Technol., 205 (2010) 251–257.
  14. G.R.M. Echavia, F. Matzusawa, N. Negishi, Photo catalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel, Chemosphere, 76 (2009) 595–600.
  15. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A.l. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  16. M.H. Dehghani, M. Faraji, A. Mohammadi, H. Kamani, Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies, Korean J. Chem. Eng., 34 (2017) 454–462.
  17. H. Amiri, R. Nabizadeh, S. Silva Martinez, S. Jamaleddin Shahtaheri, K. Yaghmaeian, A. Badiei, S. Nazmara, K. Naddafi, Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photo catalytic in a raceway pond reactor, Ecotoxicol Environ . Saf., 147 (2018) 919–925.
  18. R.V. Lenth, Response-surface methods in R, Using rsm, J. Stat. Softw., 32 (2009) 1–17.
  19. K. Yaghmaeian, S.S. Martinez, M. Hoseini, H. Amiri, Optimization of As (III) removal in hard water by electro coagulation using central composite design with response surface methodology, Desal. Water Treat., 57 (2016) 27827–27833.
  20. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, 2016.
  21. X. Zhang, J. Chen, M. Mao, H. Guo, Y. Dai, Extraction optimization of the polysaccharide from Adenophorae Radix by central composite design, Int. J. Biol. Macromol., 67 (2014) 318–322.
  22. W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide-mediated photo catalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today, 124 (2007) 133–148.
  23. A. Adesina, Industrial exploitation of photo catalysis: progress, perspectives and prospects, Catal. Surv. Asia, 8 (2004) 265–273.
  24. S. Malato, J. Blanco, M. Maldonado, P. Fernández-Ibáñez, A. Campos, Optimising solar photo catalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers, Appl. Catal. B: Env., 28 (2000) 163–174.
  25. A. Gadelha de Oliveira, J.P. Ribeiro, J. Tome de Oliveira, D. De Keukeleire, M.S. Duarte, R. Ferreira do Nascimento, Degradation of the pesticide chlorpyrifos in aqueous solutions with UV/H2O2: optimization and effect of interfering anions, J. Adv. Oxid. Technol., 17 (2014) 133–138.
  26. H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the effect of additives on the photo catalytic degradation of a triphenylmethane dye in the presence of immobilized TiO2/NiO nano particles: artificial neural network modeling, Ind. Eng. Chem. Res., 53 (2014) 6881–6895.
  27. S. Chen, Y. Liu, Study on the photo catalytic degradation of glyphosate by TiO2 photo catalyst, Chemosphere, 67 (2007) 1010–1017.
  28. M.A. Rahman, M. Muneer, D. Bahnemann, Photo catalysed degradation of a herbicide derivative, diphenamid in aqueous suspension of titanium dioxide, J. Adv. Oxid. Technol., 6 (2003) 100–108.
  29. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photo catalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.