References

  1. S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–242.
  2. J.J. Rook, Formation of haloforms during chlorination of natural water, Water Treat. Exam., 23 (1974) 234–243.
  3. T.A. Bellar, R.C. Kroner, The occurrence of organohalides in chlorinated drinking water, J. AWWA, 66 (1974) 703–706.
  4. F. Darwin, D.F.M. Pertz, Determination of the aqueous chlorination products of humic substances by gas chromatography with microwave plasma emission detection, Anal. Chem., 52 (1980) 257–284.
  5. M.J. Plewa, E.D. Wagner, P. Jazwierska, S.D.R. And, P.H. Chen, A.B. Mckague, Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity, Environ. Sci. Technol., 38 (2004) 62–68.
  6. C. Liu, J. Wang, W. Chen, H. Zhu, H. Bi, Characterization of DON in IOM derived from M. aeruginosa and its removal by sunlight/immobilized TiO2 system, RSC Adv., 5 (2015) 41203–41209.
  7. T. Takaara, D. Sano, Y. Masago, T. Omura, Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment, Water Res., 44 (2010) 3781–3786.
  8. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  9. C.S. Uyguner-Demirel, M. Bekbolet, Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation, Chemosphere, 84 (2001) 1009–1031.
  10. M. Tomaszewska, S. Mozia, Removal of organic matter from water by PAC/UF system, Water Res., 36 (2002) 4137–4143.
  11. X. Yang, Q. Shen, W. Guo, J. Peng, Y. Liang, Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination, Chemosphere, 88 (2012) 25–32.
  12. N. Daneshvar, V. Vatanpour, S. Aber, M.H. Rasoulifard, Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters, J. Electroanal. Chem., 615 (2008) 165–174.
  13. C. Liu, J. Wang, W. Chen, Z. Sun, Z. Cao, Performance and mechanism of UV/immobilized Cu-TiO2 system to degradation histidine, J. Nanomater., 2016 (2016) 1–9.
  14. C. Liu, J. Wang, W. Chen, C. Dong, C. Li, The removal of DON derived from algae cells by Cu-doped TiO2 under sunlight irradiation, Chem. Eng. J., 280 (2015) 588–596.
  15. B. Balagam, D.E. Richardson, The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines, Inorg. Chem., 47 (2008) 1173.
  16. J.M. Lin, M. Liu, Singlet oxygen generated from the decomposition of peroxymonocarbonate and its observation with chemiluminescence method, Spectrochim. Acta A, 72 (2009) 126–132.
  17. A. Xu, X. Li, H. Xiong, G. Yin, Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide, Chemosphere, 82 (2011) 1190–1195.
  18. A. Jawad, Z. Chen, G. Yin, Bicarbonate activation of hydrogen peroxide: a new emerging technology for wastewater treatment, Chin. J. Catal., 37 (2016) 810–825.
  19. J. Peng, H. Shi, J. Li, L. Wang, Z. Wang, S. Gao, Bicarbonate enhanced removal of triclosan by copper(II) catalyzed Fenton-like reaction in aqueous solution, Chem. Eng. J., 306 (2016) 484–491.
  20. A.D. Bokare, W. Choi, Bicarbonate-induced activation of H2O2 for metal-free oxidative desulfurization, J. Hazard. Mater., 304 (2016) 313–319.
  21. X. Guo, H. Li, S. Zhao, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4, catalyst, J. Taiwan Inst. Chem. Eng., 55 (2015) 90–100.
  22. A. Xu, X. Li, S. Ye, G. Yin, Q. Zeng, Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide, Appl. Catal., B, 102 (2011) 37–43.
  23. State Environmental Protection Administration of China, Monitoring and Analysis Methods of Water and Wastewater, 4th ed., Environmental Science Press, Beijing, China, 2002.
  24. J. Díaz, J.L. Lliberia, L. Comellas, F. Broto-Puig, Amino acid and amino sugar determination by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate followed by high-performance liquid chromatography and fluorescence detection, J. Chromatogr. A, 719 (1996) 171–179.
  25. Z. Li, W. Song, Z. Chen, G. Yin, Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst, Environ. Sci. Technol., 47 (2013) 3833.
  26. M. Luo, L. Lv, G. Deng, W. Yao, R. Yang, X. Li, A. Xu, The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+- HCO3 −, system, Appl. Catal., A, 469 (2014) 198–205.
  27. X. Li, Z. Xiong, X. Ruan, D. Xia, Q. Zeng, A. Xu, Kinetics and mechanism of organic pollutants degradation with cobalt– bicarbonate–hydrogen peroxide system: investigation of the role of substrates, Appl. Catal., A, 411 (2011) 24–30.
  28. A.O. Allen, C.J. Hochanadel, J.A. Ghormley, T.W. Davis, Decomposition of water and aqueous solutions under mixed fast neutron and γ-radiation, J. Phys. Chem., 56 (1951) 575–586.
  29. W. Chu, J. Hu, T. Bond, N. Gao, B. Xu, D. Yin, Water temperature significantly impacts the formation of iodinated haloacetamides during persulfate oxidation, Water Res., 98 (2016) 47–55.
  30. B.S. Berlett, P.B. Chock, M.B. Yim, E.R. Stadtman, Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide, Proc. Natl. Acad. Sci. USA, 87 (1990) 389–393.