References

  1. H. Daraei, A. Mittal, J. Mittal, H. Kamali, Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental and theoretical approaches, Desal. Wat. Treat., 52 (2014) 1307–1315.
  2. T. Liu, L. Zhao, D. Sun, Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater, J. Hazard. Mater., 184 (2010) 724–730.
  3. P. Baroni, R.S. Vieira, E. Meneghetti, S.M. Da, M.M. Beppu, Evaluation of batch adsorption of chromium ions on natural and cross linked chitosan membranes, J. Hazard. Mater., 152 (2008) 1155–1163.
  4. Q. Wang, H. Qian, Y. Yang, Z. Zhang, C. Naman, X. Xu, Reduction of hexavalent chromium by carboxymethyl cellulosestabilized zero-valent iron nanoparticles, J. Contam. Hydrol., 114 (2010) 35–42.
  5. M. Miao, Y. Wang, Q. Kong, L. Shu, Adsorption kinetics and optimum conditions for Cr(VI) removal by activated carbon prepared from luffa sponge, Desal. Wat. Treat., 57 (2016) 7763–7772.
  6. E. Pérez, L. Ayele, G. Getachew, G. Fetter, P. Bosch, A. Mayoral, I. Diaz, Removal of chromium(VI) using nano-hydrotalcite/SiO2 composite, J. Environ. Chem. Eng., 3 (2015) 1555–1561.
  7. S. Lameiras, C. Quintelas, T. Tavares, Biosorption of Cr(VI) using a bacterial biofilm supported on granular activated carbon and on zeolite, Bioresour. Technol., 99 (2008) 801–806.
  8. R. Singh, V. Misra, R.P. Singh, Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles, Environ. Monit. Assess., 184 (2011) 3643–3651.
  9. Y. Qu, X. Zhang, J. Xu, W. Zhang, Y. Guo, Removal of hexavalent chromium from wastewater using magnetotactic bacteria, Sep. Purif. Technol., 136 (2014) 10–17.
  10. M.S. Mahmoud, S.A. Mohamed, Calcium alginate as an eco-friendly supporting material for baker’s yeast strain in chromium bioremediation, HBRC J., 2015 (2015) 1–10.
  11. F. Fu, W. Han, C. Huang, B. Tang, M. Hu, Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon, Desal. Wat. Treat., 51 (2013) 2680–2686.
  12. J. Liu, A. Liu, W. Zhang, The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): aggregation, sedimentation, and reactivity with Ni(II) in water, Chem. Eng. J., 303 (2016) 268–274.
  13. F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal using resin supported nanoscale zero-valent iron, J. Environ. Manage., 128 (2013) 822–827.
  14. Y. Xie, Z. Fang, X. Qiu, E.P. Tsang, B. Liang, Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles, Chemosphere, 108 (2014) 433–436.
  15. K. Krzciuk, A. Gałuszka, Prospecting for hyperaccumulators of trace elements: a review, Crit. Rev. Biotechnol., 35 (2015) 522–532.
  16. A.N. Bezbaruah, S. Krajangpan, B.J. Chisholm, E. Khan, J.J. Bermudez, Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications, J. Hazard. Mater., 166 (2009) 1339–1343.
  17. L.M. Kustov, E.D. Finashina, E.V. Shuvalova, O.P. Tkachenko, O.A. Kirichenko, Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethenede chlorination, Environ. Int., 37 (2011) 1044–1052.
  18. F. He, D. Zhao, Manipulating the size and dispersibility of zero valent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
  19. H. Dong, I.M. Lo, Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron, Water Res., 47 (2013) 419–427.
  20. W. Wang, M. Zhou, Z. Jin, T. Li, Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation, J. Hazard. Mater., 173 (2010) 724–730.
  21. H.K. How, Z.W.Y. Wan, Kaolinite-supported nanoscale zerovalent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism, Water, 45 (2015) 3481–3488.
  22. W.S.W. Ngah, L.C. Teong, R.H. Toh, M.A.K.M. Hanafiah, Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites, Chem. Eng. J., 223 (2013) 231–238.
  23. E. Guibal, C. Milot, O. Eterradossi, C. Gauffier, A. Domard, Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses, Int. J. Biol. Macromol., 24 (1999) 49–59.
  24. X. Weng, S. Lin, Y. Zhong, Z. Chen, Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminantsamoxicillin and Cd (II) from aqueous solutions, Chem. Eng. J., 229 (2013) 27–34.
  25. B.W. Zhu, T.T. Lim, J. Feng, Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica, Chemosphere, 65 (2006) 1137–1145.
  26. Z. Liu, Y. Jiao, Z. Zhang, Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system, J. Appl. Polym. Sci., 103 (2007) 3164–3168.
  27. J. Zhang, N. Chen, M. Li, C. Feng, Synthesis and environmental application of zirconium–chitosan/graphene oxide membrane, J. Taiwan. Inst. Chem. Eng., 77 (2017) 106–112.
  28. P. Wongpanit, N. Sanchavanakit, P. Pavasant, P. Supaphol, S. Tokura, R. Rujiravanit, Preparation and characterization of microwave‐treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application, Macromol. Biosci., 5 (2005) 1001–1012.
  29. F.G.L.M. Borsagli, A.A.P. Mansur, P. Chagas, L.C.A Oliveira, H.S. Mansur, O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions, React. Funct. Polym., 97 (2015) 37–47.
  30. B. Mandal, S.K. Ray, Removal of safranine T and brilliant cresyl blue dyes from water by carboxy methyl cellulose incorporated acrylic hydrogels: isotherms, kinetics and thermodynamic study, J. Taiwan Inst. Chem. Eng., 60 (2016) 313–327.
  31. Y. Xie, Y. Yi, Y. Qin, L. Wang, G. Liu, Y. Wu, Z. Diao, T. Zhou, M. Xu, Perchlorate degradation in aqueous solution using chitosan-stabilized zero-valent iron nanoparticles, Sep. Purif. Technol., 171 (2016) 164–173.
  32. J.E. Martin, A.A. Herzing, W. Yan, X. Li, B.E. Koel, C.J. Kiely, W. Zhang, Determination of the oxide layer thickness in core-shell zero valent iron nanoparticles, Langmuir, 24 (2008) 4329–4334.
  33. N.A. Gujarathi, B.R. Rane, J.K. Patel, pH sensitive polyelectrolyte complex of O-carboxymethyl chitosan and poly (acrylic acid) cross-linked with calcium for sustained delivery of acid susceptible drugs, Int. J. Pharm., 436 (2012) 418–425.
  34. S. Li, G.W. Qin, Y. Zhang, W. Pei, L. Zuo, C. Esling, Anisotropic growth of iron oxyhydroxide nanorods and photo catalytic activity, Adv. Eng. Mater., 12 (2010) 1082–1085.
  35. H. Zhu, Y. Fu, R. Jiang, J. Yao, L. Xiao, G. Zeng, Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution, Bioresour. Technol., 105 (2012) 24–30.
  36. D. Wu, J. Zhao, L. Zhang, Q. Wu, Y. Yang, Lanthanum adsorption using iron oxide loaded calcium alginate beads, Hydrometallurgy, 101 (2010) 76–83.
  37. A.S.A. Bakr, Y.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H. Khalil, Removal of ferrous ions from their aqueous solutions onto NiFe2O4-alginate composite beads, J. Environ. Chem. Eng., 3 (2015) 1486–1496.
  38. B.A. Manning, J.R. Kiser, H. Kwon, S.R. Kanel, Spectroscopic investigation of Cr(III) and Cr(VI)-treated nanoscale zero-valent iron, Environ. Sci. Technol., 41 (2007) 586–592.
  39. T. Liu, X. Yang, Z. Wang, X. Yan, Enhanced chitosan beadssupported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers, Water Res., 47 (2013) 6691–6700.
  40. H. Genç-Fuhrman, P. Wu, Y. Zhou, A. Ledin, Removal of As, Cd, Cr, Cu, Ni, and Zn from polluted water using an iron based sorbent, Desalination, 226 (2008) 357–370.
  41. X. Li, J. Cao, W. Zhang, Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with highresolution X-ray photo electron spectroscopy (HR-XPS), Ind. Eng. Chem. Res., 47 (2008) 2131–2139.
  42. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  43. G.N. Jouvanovic, P. Plazl, P. Sakrittichal, K. Al-Khald, Dechlorination of p-chlorophenol in a microreactor with bimetallic Pb/Fe catalyst, Ind. Eng. Chem. Res., 44 (2005) 5099–5106.
  44. N. Talreja, D. Kumar, N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3 (2014) 34–45.
  45. T. Liu, Z. Wang, L. Zhao, X. Yang, Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater, Chem. Eng. J., 189–190 (2012) 196–202.
  46. F. Mi, S. Wu, Y. Chen, Combination of carboxymethyl chitosancoated magnetic nanoparticles and chitosan-citrate complex gel beads as a novel magnetic adsorbent, Carbohydr. Polym., 131 (2015) 255–263.
  47. G. Xia, X. Lang, M. Kong, X. Cheng, Y. Lin, C. Feng, X. Chen, Surface fluid-swellable chitosan fiber as the wound dressing material, Carbohydr. Polym., 136 (2016) 860–866.
  48. V.M. Boddu, K. Abburi, J.L. Talbott, E.D. Smith, Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent, Environ. Sci. Technol., 37 (2003) 4449–4456.
  49. F. Zhu, L. Li, S. Ma, Z. Shang, Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles, Chem. Eng. J., 302 (2016) 663–669.
  50. L. Shi, Y. Lin, X. Zhang, Z. Chen, Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 171 (2011) 612–617.
  51. Z. Diao, X. Xu, D. Jiang, L. Kong, Y. Sun, Y. Hu, Q. Hao, H. Chen, Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions, Chem. Eng. J., 302 (2016) 213–222.
  52. C.M. Cirtiu, T. Raychoudhury, S. Ghoshal, A. Moores, Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers, Colloids Surf., A, 390 (2011) 95–104.
  53. B. Schnyder, D. Alliata, R. Kötz, H. Siegenthaler, Electrochemical intercalation of perchlorate ions in HOPG: an SFM/LFM and XPS study, Appl. Surf. Sci., 173 (2001) 221–232.
  54. H. Kim, H.J. Hong, J. Juri, S.H. Kim, J.W. Yang, Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead, J. Hazard. Mater., 176 (2010) 1038–1043.
  55. L. Wu, L. Liao, G. Lv, F. Qin, Y. He, X. Wang, Micro-electrolysis of Cr(VI) in the nano scale zero-valent iron loaded activated carbon, J. Hazard. Mater., 254–255 (2013) 277–283.