1. Q. Zhang, Y. Zhou, Z. Zhang, Y. He, Y.D. Chen, Y.H. Lin, Plasmonic photocatalyst, Prog. Chem., 25 (2013) 2020–2027.
  2. Y.G. Xu, M. Xie, T. Zhou, S. Yin, H. Xu, H.Y. Ji, H.M. Li, Q. Zhang, In situ growth of Ag/AgCl on the surface of CNT and the effect of CNT on the photoactivity of the composite, New J. Chem., 39 (2015) 5540–5547.
  3. Z.W. Liu, W.B. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination, Nano Lett., 11 (2011) 1111–1116.
  4. C.J. Miller,, H.J. Yu, T.D. Waite, Degradation of rhodamine B during visible light photocatalysis employing Ag@AgCl embedded on reduced graphene oxide, Colloids Surf., A, 435 (2013)147–153.
  5. H.J. Yu, C.J. Miller, A. Ikeda-Ohno, T.D. Waite, Photodegradation of contaminants using Ag@AgCl/rGO assemblages: possibilities and limitations, Catal. Today, 224 (2014) 122–131.
  6. L. Zhou, H.Y. Zhang, H.Q. Sun, S.M. Liu, M.O. Tade, S.B. Wang, W.Q. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review, Catal. Sci. Technol., 6 (2016) 7002–7023.
  7. J. Tian, R. Liu, G.H. Wang, Y. Xu, X.F. Wang, H.G. Yu, Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/AgCl photocatalyst, Appl. Surf. Sci., 319 (2014) 324–331.
  8. X.J. Wen, C.G. Niu, L. Zhang, D.W. Huang, G.M. Zeng, In-situ synthesis of visible-light-driven plasmonic Ag/AgCl-CdWO4 photocatalyst, Ceram. Int., 43 (2017) 1922–1929.
  9. S. Garg, H.Y. Rong, C.J. Miller, T.D. Waite, Chlorinemediated regeneration of semiconducting AgCl(s) following light-induced Ag0 formation: implications to contaminant degradation, J. Phys. Chem. C, 120 (2016) 5988–5996.
  10. M. Cargnello, T. Montini, S.Y. Smolin, J.B. Priebe, J.J.J. Delgado, V.V. Doan-Nguyen, I.S. McKay, J.A. Schwalbe, M.M. Pohl, T.R. Gordon, Y.P. Lu, J.B. Baxter, A. Brückner, P. Fornasiero, C.B. Murray, Engineering titania nanostructure to tune and improve its photocatalytic activity, Proc. Natl. Acad. Sci. USA, 113 (2016) 3966–3971.
  11. Z.F. Zhao, Y.Z. Wang, J. Xu, Y. Wang, Mesoporous Ag/TiO2 nanocomposites with greatly enhanced photocatalytic performance towards degradation of methyl orange under visible light, RSC Adv., 5 (2015) 59297–59305.
  12. L. Liu, S.L. Lin, J.S. Hu, Y.H. Liang, W.Q. Cui, Growth of nano Ag@AgCl on (111) facets of Cu2O microcrystals with an enhanced photocatalytic activity, RSC Adv., 5 (2015) 62306–62313.
  13. T.T. Li, Y.M. He, H.J. Lin, J. Cai, L.Z. Dong, X.X. Wang, M.F. Luo, L.H. Zhao, X.D. Yi, W.Z. Weng, Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4, Appl. Catal., B, 138–139 (2013) 95–103.
  14. L.Z. Dong, Y.M. He, T.T. Li, J. Cai, W.D. Hu, S.S. Wang, H.J. Lin, M.F. Luo, X.D. Yi, L.H. Zhao, W.Z. Weng, H.L. Wan, A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl-SmVO4 and AgISmVO4 composites, Appl. Catal., A, 472 (2014) 143–151.
  15. Y.L. Zhao, C.R. Tao, G. Xiao, G.P. Wei, L.H. Li, C.X. Liu, H.J. Su, Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites, Nanoscale, 8 (2016) 5313–5326.
  16. Y.G. Xu, H. Xu, H.M. Li, J.X. Xia, C.T. Liu, L. Liu, Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO, J. Alloys Compd., 509 (2011) 3286–3292.
  17. X.X. Yao, X. Liu, One-pot synthesis of Ag/AgCl@SiO2 core–shell plasmonic photocatalyst in natural geothermal water for efficient photocatalysis under visible light, J. Mol. Catal. A Chem., 393 (2014) 30–38.
  18. X.P. Wang, T.T. Lim, Highly efficient and stable Ag–AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation, Water Res., 47 (2013) 4148–4158.
  19. M. Cui, J.X. Yu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, In-situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity, Appl. Surf. Sci., 387 (2016) 912–920.
  20. J.X. Yu, M. Cui, X.Z. Liu, Q.Q. Chen, Y. Wu, Y.M. He, Preparation of novel AgBr/Bi3O4 Br hybrid with high photocatalytic activity via in situ ion exchange method, Mater. Lett., 193 (2017) 73–76.
  21. X.N. He, F. Su, Z.Z. Lou, W.Z. Jia, Y.L. Song, H.Y. Chang, Y.H. Wu, J. Lan, X.Y. He, Y. Zhang, Ipr1 gene mediates RAW 264.7 macrophage cell line resistance to Mycobacterium bovis, Scand. J. Immunol., 74 (2011) 438–444.
  22. L.M. Song, J.F. Yang, S.J. Zhang, Enhanced photocatalytic activity of Ag3PO4 photocatalyst via glucose-based carbonsphere modification, Chem. Eng. J., 309 (2016) 222–229.
  23. Y.H. Liang, S.L. Lin, L. Liu, J.S. Hu, W.Q. Cui. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation, Appl. Catal., B, 164 (2015) 192–203.
  24. W.Q. Cui, H. Wang, Y.H. Liang, B.X. Han, L. Liu, J.S. Hu, Microwave-assisted synthesis of Ag@AgBr-intercalated K4Nb6O17 composite and enhanced photocatalytic degradation of Rhodamine B under visible light, Chem. Eng. J., 230 (2013) 10–18.
  25. J. Liu, G.K. Zhang, Recent advances in synthesis and applications of clay-based photocatalysts: a review, Phys. Chem. Chem. Phys., 16 (2014) 8178–8192.
  26. T.Y. Xu, R.L. Zhu, J.X. Zhu, X.L. Liang, Y. Liu, Y. Xu, H.P. He, Ag3PO4 immobilized on hydroxy-metal pillared montmorillonite for the visible light driven degradation of acid red 18, Catal. Sci. Technol., 6 (2016) 4116-4123.
  27. S.T. Zhong, W. Jiang, M. Han, G.Z. Liu, N. Zhang, Y. Lu, Graphene supported silver@silver chloride and ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation, Appl. Surf. Sci., 347 (2015) 242–249.
  28. X.P. Wu, W.Y. Zhu, X.L. Zhang, T.H. Chen, R. Frost, Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol, Appl. Clay Sci., 52 (2011) 400–406.
  29. X. Tian, W. Wang, N. Tian, C. Zhou, C. Yang, S. Komarneni, Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid, J. Hazard. Mater., 309 (2016) 151–156.
  30. J. Jin, L.J. Fu, H.M. Yang, J. Ouyang, Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities, Sci. Rep., 5 (2015) 12429–12438.
  31. H.S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renew. Sust. Energy Rev., 45 (2015) 359–378.
  32. X.F. Cao, X.W. Peng, S.N. Sun, L.X. Zhong, W. Chen, S. Wang, R.C. Sun, Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates, Carbohydr. Polym., 118 (2015) 44–51.
  33. Z.Z. Lou, Z.Y. Wang, B.B. Huang, Y. Dai, Synthesis and activity of plasmonic photocatalysts, Chem. Cat. Chem., 6 (2014) 2456–2476.
  34. Y.J. Xu, G. Weinberg, X. Liu, O. Timpe, R. Schlogl, D.S. Su, Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon, Adv. Funct. Mater., 18 (2008) 3613–3619.
  35. H.Y. Li, Y.J. Sun, B. Cai, S.Y. Gan, D.X. Han, L. Niu, T.S. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4(040) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal., B, 170–171 (2015) 206–214.
  36. Z.R. Yue, S.E. Bender, J.W. Wang, J. Economy, Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water, J. Hazard. Mater., 166 (2009) 74–78.
  37. X. Teng, D. Black, N.J. Watkins, Y. Gao, H. Yang, Platinummaghemite core−shell nanoparticles using a sequential synthesis, Nano Lett., 3 (2003) 261–264.
  38. Y. Tian, B.B. Yu, X. Li, K. Li, Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents, J. Mater. Chem., 21 (2011) 2476–2481.
  39. B.Y. Wang, M. Zhang, W.Z. Li, L.L. Wang, J. Zheng, W.J. Gan, J.L. Xu, Fabrication of Au(Ag)/AgCl/Fe3O4@PDA@ Au nanocomposites with enhanced visible-light-driven photocatalytic activity, Dalton Trans., 44 (2015) 17020–17025.
  40. J.T. Tang, Y.H. Liu, H.Z. Li, Z. Tan. D.T. Li, A novel Ag3AsO4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance, Chem. Commun., 49 (2013) 5498–5500.
  41. J.G. Yu, G.P. Dai, B.B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
  42. M.S. Zhu, P.L. Chen, M.H. Liu, Graphene Oxide Enwrapped Ag/AgX (X = Br,Cl) nanocomposite as a highly efficient visiblelight plasmonic photocatalyst, ACS Nano, 5 (2011) 4529–4536.
  43. C. McManamon, J.D. Holmes, M.A. Morris, Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders, J. Hazard. Mater., 193 (2011) 120–127.
  44. A.G. Zhigotskii, E.F. Rynda, N.A. Mishchuk, V.M. Kochkodan, A.V. Ragulya, V.P. Klimenko, M.N. Zagornyi, A study of the photocatalytic activity of titanium dioxide nanopowders, Russ. J. Appl. Chem., 81 (2008) 2056–2061.
  45. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem., 47 (2008) 7931–7933.