1. M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Ait-Ichou, Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Sep. Purif. Technol., 61 (2008) 103–108.
  2. F. Duarte, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, L.M. Madeira, Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels, Appl. Catal., B, 85 (2009) 139–147.
  3. J.M. Fontmorin, M. Sillanpää, Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: removal of heavy metals and improvement of the sludge dewaterability, Sep. Purif. Technol., 156 (2015) 655–664.
  4. J.H. Deng, J.Y. Jiang, Y.Y. Zhang, X.P. Lin, C.M. Du, Y. Xiong, FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II, Appl. Catal., B, 84 (2008) 468–473.
  5. A.L.T. Pham, C. Lee, F.M. Doyle, D.L. Sedlak, A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values, Environ. Sci. Technol., 43 (2009) 8930–8935.
  6. M. Kallel, C. Belaid, T. Mechichi, M. Ksibi, B. Elleuch, Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron, Chem. Eng. J., 150 (2009) 391–395.
  7. T. Zhou, Y.Z. Li, J. Ji, Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors, Sep. Purif. Technol., 62 (2008) 551–558.
  8. G.B. Ortiz de la Plata, O.M. Alfano, A.E. Cassano, Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms, Appl. Catal., B, 95 (2010) 14–25.
  9. M.C. Pereira, L.C.A. Oliveira, E. Murad, Iron oxide catalysts: Fenton and Fenton-like reactions-a review, Clay Miner., 47 (2012) 285–302.
  10. L. Xu, J. Wang, Degradation of 2,4,6-trichlorophenol using magnetic nanoscaled Fe3O4/CeO2, composite as a heterogeneous Fenton-like catalyst, Sep. Purif. Technol., 149 (2015) 255–264.
  11. S.X. Zhang, X.L. Zhao, H.Y. Niu, Y.L. Shi, Y.Q. Cai, G.B. Jiang, Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, J. Hazard. Mater., 167 (2009) 560–566.
  12. R.C.C. Costa, F.C.C. Moura, J.D. Ardisson, J.D. Fabris, R.M. Lago, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides, Appl. Catal., B, 83 (2008) 131–139.
  13. A. Khataee, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, M. Safarpour, H. Gholipour Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation, Ind. Eng. Chem. Res., 53 (2014) 1924–1932.
  14. A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrason. Sonochem., 23 (2015) 219–230.
  15. S. Anju, K. Jyothi, S.Y. Sindhu Joseph, E. Yesodharan, Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: comparative efficacy of ZnO, TiO2 and ZnO-TiO2, Res. J. Recent Sci., 1 (2012) 191–201.
  16. N. Ertugay, F.N. Acar, The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst, Appl. Surf. Sci., 318 (2014) 121–126.
  17. A. Khataee, S. Saadi, B. Vahid, S.W. Joo, B.K. Min, Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures, Ultrason. Sonochem., 29 (2016) 27–38.
  18. H.Y. He, J. Fe, J. Lu, High photocatalytic and photo-Fenton-like activities of ZnO-reduced graphene oxide nanocomposites in the degradation of malachite green in water, IET Micro Nano Lett., 10 (2015) 389–394.
  19. T.T. Vu, G. Marban, Sacrificial template synthesis of high surface area metal oxides. Example: an excellent structured Fenton-like catalyst, Appl. Catal., B, 152 (2014) 51–58.
  20. A. Akcil, F. Vegliob, F. Ferella, M.D. Okudan, A. Tuncuk, A review of metal recovery from spent petroleum catalysts and ash, Waste Manage., 45 (2015) 420–433.
  21. M. Marafi, A. Stanislaus, Spent catalyst waste management: a review Part I-developments in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recycl., 52 (2008) 859–873.
  22. H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, G.M. Zeng, Y. Wang, Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 173 (2011) 494–502.
  23. X. Zhang, P.Y. Zhang, Z. Wu, L. Zhang, G.M. Zeng, C.J. Zhou, Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles, Colloids Surf. A, 435 (2013) 85–90.
  24. L. Wang, J. Li, Z. Wang, L. Zhao, Q. Jiang, Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal, Dalton Trans., 42 (2013) 2572–2579.
  25. A. Mittal, J. Mittal, A. Malviya, D. Kaur, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J. Colloid Interface Sci., 343 (2010) 463–473.
  26. A. Nezamzadeh-Ejhieh, Z. Banan, A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet, Desalination, 279 (2011) 146–151.
  27. A. Safavi, S. Momeni, Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst, J. Hazard. Mater., 201 (2012) 125–131.
  28. M.T. Chaudhry, M. Zohaib, N. Rauf, S.S. Tahir, S. Parvez, Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49, Appl. Microbiol. Biotechnol., 98 (2014) 3133–3141.
  29. A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet dye from wastewater by surfactant-modified alumina, Sep. Purif. Technol., 44 (2005) 139–144.
  30. K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, J. Hazard. Mater., 186 (2011) 1462–1473.
  31. A. Nezamzadeh-Ejhieh, Z. Banan, Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A, Desalination, 284 (2012) 157–166.
  32. J. Xu, L. Tan, S.A. Baig, D. Wu, X. Lv, X. Xu, Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles: effects of pH, temperature, common dissolved ions and humic acid, Chem. Eng. J., 231 (2013) 26–35.
  33. A. Nezamzadeh-Ejhieh, Z. Banan, Photodegradation of dimethyldisulfide by heterogeneous catalysis using nanoCdS and nanoCdO embedded on the zeolite A synthesized from waste porcelain, Desal. Wat. Treat., 52 (2014) 3328–3337.
  34. B. Khodadadi, M. Bordbar, Sonochemical synthesis of undoped and Co-doped ZnO nanostructures and investigation of optical and photocatalytic properties, Iran. J. Catal., 6 (2016) 37–42.
  35. J. Sadiq, M. Mohamed, N.A. Samson, Reflux condensation synthesis and characterization of Co3O4 nanoparticles for photocatalytic applications, Iran. J. Catal., 4 (2014) 219–226.
  36. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, Mater. Sci. Semicond. Process., 30 (2015) 275–284.
  37. J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution, J. Hazard. Mater., 316 (2016) 194–203.
  38. H. Derikvandi, A. Nezamzadehejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater., 321 (2017) 629–638.
  39. H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles, J. Mol. Catal. A Chem., 426 (2017) 158–169.
  40. I.A. Katsoyiannis, T. Ruettimann, S.I. Hug, pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water, Environ. Sci. Technol., 42 (2008) 7424–7430.
  41. R. Su, J. Sun, Y.P. Sun, K.J. Deng, D.M. Cha, D.Y. Wang, Oxidative degradation of dye pollutants over a broad pH range using hydrogen peroxide catalyzed by FePz(dtnCl2)4, Chemosphere, 77 (2009) 1146–1151.
  42. X. Zhong, S. Royer, H. Zhang, Q. Huang, L. Xiang, S. Valange, J. Barrault, Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. acid orange 7 using sono-photo-Fenton process, Sep. Purif. Technol., 80 (2011) 163–171.
  43. B. Lodha, S. Chaudhari, Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater., 148 (2007) 459–466.
  44. S.J. Yang, H.P. He, D.Q. Wu, D. Chen, Y.H. Ma, X.L. Li, P. Yuan, Degradation of methylene blue by heterogeneous Fenton reaction using titanomagnetite at neutral pH values: process and affecting factors, Ind. Eng. Chem. Res., 48 (2009) 9915–9921.
  45. S.D. Chatterjee, A. Katafias, Degradation of methylene blue by the [RuIII(hedtra)(H2O)]/H2O2 catalytic system, Curr. Catal., 3 (2014) 82–87.
  46. H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2, onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution, J. Ind. Eng. Chem., 26 (2015) 315–321.
  47. N. Ajoudanian, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin, Mater. Sci. Semicond. Process., 36 (2015) 162–169.
  48. S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron oxide onto an Iranian clinoptilolite as a heterogeneous catalyst for photodegradation of furfural in a wastewater sample, Desal. Wat. Treat., 57 (2016) 10802–10814.
  49. P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nanoparticles to improve its activity in photodegradation of 2-nitrotoluene, RSC Adv., 5 (2015) 75300–75310.
  50. Q. Liao, J. Sun, L. Gao, Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts, Colloids Surf., A, 345 (2009) 95–100.
  51. N.K. Daud, B.H. Hameed, Decolorization of acid red 1 by Fenton-like process using rice husk ash-based catalyst, J. Hazard. Mater., 176 (2010) 938–944.
  52. J.A. Melero, G. Calleja, F. Martinez, R. Molina, M. Pariente, Nanocomposite Fe2O3/SBA-15: an efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions, Chem. Eng. J., 131 (2007) 245–256.
  53. W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst, Environ. Sci. Technol., 44 (2010) 1786–1791.
  54. Z.A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Wat. Treat., 57 (2016) 16483–16494.
  55. A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P, J. Ind. Eng. Chem., 21 (2015) 668–676.
  56. N. Ertugay, E. Malkoc, Removal of acid red 92 by homogeneous and heterogenous Fenton and Fenton-like processes, J. Selcuk Univ. Nat. Appl. Sci., 3 (2013) 473–489.
  57. H.J. Fan, S.T. Huang, W.H. Chung, J.L. Jan, W.Y. Lin, C.C. Chen, Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification, J. Hazard. Mater., 171 (2009) 1032–1044.
  58. N. Lubick, Cap degrade: a reactive nanomaterial barrier also serves as a cleanup tool, Environ. Sci. Technol., 43 (2009) 235–235.
  59. M.S.H. Mak, P. Rao, I. Lo, Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid, Environ. Pollut., 159 (2011) 377–382.
  60. J. Wu, H. Gao, S. Yao, L. Chen, Y. Gao, H. Zhang, Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst, Sep. Purif. Technol., 147 (2015) 179–185.
  61. I. Siminiceanu, C.I. Alexandru, E. Brillas, A kinetic model for the crystal violet mineralisation in water by the electro-Fenton process, Environ. Eng. Manage. J., 7 (2008) 9–12.
  62. H. Zhang, J. Wu, Z. Wang, D. Zhang, Electrochemical oxidation of Crystal Violet in the presence of hydrogen peroxide, J. Chem. Technol. Biotechnol., 85 (2010) 1436–1444.
  63. H. He, S. Yang, K. Yu, Y. Ju, C. Sun, L. Wang, Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions, J. Hazard. Mater., 173 (2010) 393–400.