1. S.R. Taylor, S.M. McLennan, M.T. McCulloch, Geochemistry of loess, continental crustal composition and crustal model ages, Geochim. Cosmochim. Acta, 47 (1983) 1897–1905.
  2. C.D.F. Rogers, T.A. Dijkstra, I.J. Smalley, Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe: in memory of Jan Sajgalik, Eng. Geol., 37 (1994) 83–113.
  3. I.J. Smalley, I.F. Jefferson, T.A. Dijkstra, E. Derbyshire, Some major events in the development of the scientific study of loess, Earth Sci. Rev., 54 (2001) 5–18.
  4. H. Xiao, M. Wang, S. Sheng, Spatial evolution of URNCL and response of ecological security: a case study on Foshan City, Geol. Ecol. Landscapes, 1 (2017) 190–196.
  5. W.G. Holtz, J.W. Hilf, Settlement of Soil Foundations Due to Saturation, Proc. 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, 1961, pp. 673–679.
  6. J.B. Burland, Some Aspects of the Mechanical Behavior of Partly Saturated Soils, Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, Butterworths, Sydney, Australia, 1965, pp. 270–278.
  7. L. Barden, A. McGown, K. Collins, The collapse mechanism in partly saturated soil, Eng. Geol., 7 (1973) 49–60.
  8. E.E. Alonso, A. Gens, A.A. Josa, Constitutive model for partially saturated soils, Géotechnique, 40 (1990) 405–430.
  9. D.G. Fredlund, J.K.M. Gan, The collapse mechanism of a soil subjected to one-dimensional loading and wetting, Genesis Prop. Collap. Soils, 468 (1995) 173–205.
  10. J.D. Wang, T.F. Gu, A mechanism for loess self-load collapsibility-saturated loess liquefaction caused by Earth microtremors, Appl. Mech. Mater., 405–408 (2013) 541–547.
  11. J.D. Wang, Y. Ma, Q.Y. Guo, D. Chu, Influence of pressure and water content on loess collapsibility of the Xixian New Area in Shaanxi province, China, Earth Sci. Res. J., 21 (2017) 197–202.
  12. B.P. Wen, Y.J. Yan, Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China, Eng. Geol., 168 (2014) 46–58.
  13. A.A. Al-Rawas, State-of-the-art-review of collapsible soils, Sci. Technol. Special Rev., 5 (2000) 115–135.
  14. C.E. Zapata, W.N. Houston, S.L. Houston, K.D. Walsh, Soil– water characteristic curve variability, Adv. Unsatur. Geotech., 287 (2000) 84–124.
  15. S. Yang, J. Li, Y. Song, Application of surfactant Tween 80 to enhance Fenton oxidation of polycyclic aromatic hydrocarbons (PAHs) in soil pre-treated with Fenton reagents, Geol. Ecol. Landscapes, 1 (2017) 197–204.
  16. G.H. Beckwith, L.A. Hansen, Identification and Characterization of the Collapsing Alluvial Soils of the Western United States, Foundation Engineering, Current Principles and Practices, Vol. 1, 2015, pp.143–160.
  17. A. Radan, M. Latifi, M. Moshtaghie, M. Ahmadi, M. Omidi, Determining the sensitive conservative site in Kolah Ghazi National Park, Iran, in order to management wildlife by using GIS software, Environ. Ecosyst. Sci., 1 (2017) 13–15.
  18. P. Li, T. Li, S.K. Vanapalli, Influence of environmental factors on the wetting front depth: a case study in the loess plateau, Eng. Geol., 214 (2016) 1–10.
  19. L. Xu, M.R. Coop, M. Zhang, G. Wang, The mechanics of a saturated silty loess and implications for landslides, Eng. Geol., 236 (2017) 29–36. doi: enggeo.2017.02.021.
  20. P.P. Sun, M.S. Zhang, L.F. Zhu, Q. Xue, W. Hu, Typical case study of loess collapse and discussion on related problems, Geol. Bull. China, 32 (2013) 847–851.
  21. S. Vazdani, G. Sabzghabaei, S. Dashti, M. Cheraghi, R. Alizadeh, A. Hemmati, FMEA techniques used in environmental risk assessment, Environ. Ecosyst. Sci., 1 (2017) 16–18.
  22. X.Y. Lei, The hazards of loess landslides in the southern tableland of Jingyang County, Shaanxi and their relationship with the channel water into fields, J. Eng. Geol., 3 (1995) 57–64.
  23. C.W. Ng, B. Wang, Y.K. Tung, Three-dimensional numerical investigations of groundwater responses in an unsaturated slope subjected to various rainfall patterns, Can. Geotech. J., 38 (2001) 1049–1062.
  24. A.C. Trandafir, R.C. Sidle, T. Gomi, T. Kamai, Monitored and simulated variations in matric suction during rainfall in a residual soil slope, Environ. Geol., 55 (2008) 951–961.
  25. P. Rajeev, D. Chan, J. Kodikara, Ground–atmosphere interaction modelling for long-term prediction of soil moisture and temperature, Can. Geotech. J., 49 (2012) 1059–1073.
  26. X.L. Wang, Y.P. Zhu, X.F. Huang, Field tests on deformation property of self-weight collapsible loess with large thickness, Int. J. Geomech., 14 (2014) 613–624.
  27. A.G. Li, Z.Q. Yue, L.G. Tham, C.F. Lee, K.T. Law, Fieldmonitored variations of soil moisture and matric suction in a saprolite slope, Can. Geotech. J., 42 (2005) 13–26.
  28. T.L. Zhan, G.Y. Li, W.G. Jiao, T. Wu, J.W. Lan, Y.M. Chen, Field measurements of water storage capacity in a loess–gravel capillary barrier cover using rainfall simulation tests, Can. Geotech. J., 54 (2016) 1523–1536.
  29. H. Chen, M. Shao, Y. Li, The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China, J. Hydrol., 360 (2008) 242–251.
  30. M. Bahmani, A. Noorzad, J. Hamedi, F. Sali, The role of Bacillus pasteurii on the change of parameters of sands according to temperature compresion and wind erosion resistance, J. CleanWAS, 1 (2017) 1–5.
  31. H. Gvirtzman, E. Shalev, O. Dahan, Y.H. Hatzor, Large-scale infiltration experiments into unsaturated stratified loess sediments: monitoring and modeling, J. Hydrol., 349 (2008) 214–229.
  32. X.B. Tu, A.K.L. Kwong, F.C. Dai, L.G. Tham, H. Min, Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides, Eng. Geol., 105 (2009) 134–150.
  33. T.L. Zhan, C.W. Ng, D.G. Fredlund, Field study of rainfall infiltration into a grassed unsaturated expansive soil slope, Can. Geotech. J., 44 (2007) 392–408.
  34. D.K. Singh, T.B.S. Rajput, D.K. Singh, H.S. Sikarwar, R.N. Sahoo, T. Ahmad, Simulation of soil wetting pattern with subsurface drip irrigation from line source, Agric. Water Manage., 83 (2006) 130–134.
  35. P. Li, S.K. Vanapalli, T.L. Li, Review of collapse triggering mechanism of collapsible soils due to wetting, J. Rock Mech. Geotech. Eng., 8 (2016) 256–274.
  36. C. Mi, Y. Shen, W.J. Mi, Y.F. Huang, Ship identification algorithm based on 3D point cloud for automated ship loaders, J. Coastal Res., 73 (2015) 28–34.
  37. W.L. Wun, G.K. Chua, S.Y. Chin, Effect of palm oil mill effluent (pome) treatment by activated sludge, J. CleanWAS, 1 (2017) 6–9.
  38. D. Hillel, Soil and water: physical principles and processes, Q. Rev. Biol., 36 (1971) 85–93.
  39. S.K. Vanapalli, D.G. Fredlund, D.E. Pufahl, The influence of soil structure and stress history on the soil–water characteristics of a compacted till, Géotechnique, 49 (1999) 143–159.