1. Available at: (Accessed 5 September 2017).
  2. Available at: (Accessed 5 September 2017).
  3. S.W. Woo, B.S. Park, W.N. Lee, Y.H. Park, J.H. Min, S.W. Park, S.N. You, G.J. Jun, Y.J. Baek, Seawater intake system in Test Bed seawater reverse osmosis (SWRO) project, Desal. Wat. Treat., 51 (2013) 6238–6247.
  4. W.N. Lee, S.W. Woo, B.S. Park, J.J. Lee, J.H. Min, S.W. Park, S.N. You, G.J. Jun. Y.J. Baek, Economic feasibility study for MF system as a pretreatment of SWRO in test bed desalination plant, Desal. Wat. Treat., 51 (2013) 6248–6258.
  5. W. Lee, C.O. Kwon, G. Jun, B. Park, J. Lee, J. Min, S. Park, S. You, S. Woo, Design and Commissioning of Busan Gijang SWRO Desalination Plant Using 16-inch Membranes in Korea, IDA World Congress on Desalination and Water Reuse, IDAWC 51480, August 30–September 4, San Diego, CA, USA, 2015.
  6. WATEREUSE Association Desalination Committee, Seawater Desalination Costs, White Paper, 2012.
  7. S. Ihm, S. Woo, Comparative study on the methods of calculating theoretical minimum energy requirement for desalination, Desal. Wat. Treat., 90 (2017) 32–45.
  8. WATEREUSE Association Desalination Committee, Seawater Desalination Power Consumption, White Paper, 2011.
  9. S. Shiels, When trimming a centrifugal pump impeller can save energy and increase flow rate, World Pumps, 1999 (1999) 37–40.
  10. P. Zhou, J. Tang, J. Mou, B. Zhu, Effect of impeller trimming on performance, World Pumps, 2016 (2016) 38–41.
  11. R. Camoirano, G. Dellepiane, Variable frequency drives for MSF desalination plant and associated pumping stations, Desalination, 182 (2005) 53–65.
  12. S. Prachyl, Variable Frequency Drives and Energy Savings, White Paper, Siemens, 2010.
  13. O.A. Hamed, A.M. Zamamiri, S. Aly, N. Lior, Thermal performance and exergy analysis of a thermal vapor compression desalination, Energy Convers. Manage., 37 (1996) 379–387.
  14. K.H. Mistry, R.K. McGovern, G.P. Thiel, E.K. Summers, S.M. Zubair, J.H. Lienhard V, Entropy generation analysis of desalination technologies, Entropy, 13 (2011) 1829–1864.
  15. A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos, The exergetic efficiency as a performance evaluation tool in reverse osmosis desalination plants in operation, Desalination, 413 (2017) 19–28.
  16. Available at: (Accessed 22 September 2017).
  17. V. Tutterow, G. Hovstadius, A. McKane, Going with the Flow: Life Cycle Costing for Industrial Pumping Systems. Available at: (Accessed 11 January 2018).
  18. Available at: (Accessed 22 September 2017).
  19. M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Second law analysis of reverse osmosis desalination plants: an alternative design using pressure retarded osmosis, Energy, 36 (2011) 6617–6626.
  20. T. Gundersen, An Introduction to the Concept of Exergy and Energy Quality, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway, Vol. 3, 2009.
  21. A. Ghannadzadeh, Exergetic Balances and Analysis in a Process Simulator: A Way to Enhance Process Energy Integration, Ph.D. Thesis, University of Toulouse, 2012.
  22. M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data, Desal. Wat. Treat., 16 (2010) 354–380.
  23. Y. Cerci, Exergy analysis of a reverse osmosis desalination plant in California, Desalination, 134 (2002) 257–266.