1. D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.G. Weisener, The Geochemistry of Acid Mine Drainage, H.D. Holland, K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 9, 2003, pp. 149−204.
  2. M. Aubertin, B. Bussière, T. Pabst, M. James, M. Mbonimpa, Review of the Reclamation Techniques for Acid-Generating Mine Wastes Upon Closure of Disposal Sites, Proc. Geo-Chicago: Sustainability, Energy and the Geoenvironment, August 14–18, Chicago, 2016, 16 p.
  3. M. Benzaazoua, H. Bouzahzah, Y. Taha, L. Kormos, D. Kabombo, F. Lessard, B. Bussière, I. Demers, M. Kongolo, Integrated environmental management of pyrrhotite tailings at Raglan Mine: part 1 challenges of desulphurization process and reactivity prediction, J. Cleaner Prod., 162 (2017) 86−95.
  4. T. Genty, B. Bussière, M. Paradie, C.M. Neculita, Passive biochemical treatment of ferriferous mine drainage: Lorraine mine site, Northern Quebec, Canada. In: Proc. of the International Mine Water Association (IMWA). July 11-15, Leipzig, Germany (2016)
  5. T.V. Rakotonimaro, C.M. Neculita, B. Bussière, T. Genty, G.J. Zagury, Performance assessment of laboratory and field-scale multi-step passive treatment of iron-rich acid mine drainage for design improvement, Environ. Sci. Pollut. Res., 2018 https://doi. org/10.1007/s11356-018-1820-x.
  6. J. Skousen, C.E. Zipper, A. Rose, P.F. Ziemkiewicz, R. Nairn, L.M. McDonald, R.L. Kleinmann, Review of passive systems for acid mine drainage treatment, Mine Water Environ., 36 (2017) 133−153.
  7. J.H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, J.-W. Chung, Role of organic amendments on enhanced bioremediation of heavy metal (loids) contaminated soils, J. Hazard. Mater., 185 (2011) 549−574.
  8. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, Remediation of heavy metal (loids) contaminated soils – to immobilize or immobilize?, J. Hazard. Mater., 266 (2014) 141−166
  9. R.R. Karna, T. Luxton, K.E. Bronstein, J.H. Redmon, K.G. Scheckel, State of the science review: potential for beneficial use of waste by products for in situ remediation of metalcontaminated soil and sediment, Crit. Rev. Environ. Sci. Technol., 47 (2017) 65−129.
  10. M.O. Mendez, R. Maier, Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology, Environ. Health Perspect., 116 (2008) 278−283.
  11. V.N. Kavamura, E. Esposito, Biotechnological strategies to the decontamination of soils polluted with heavy metals, Biotechnol. Adv., 28 (2010) 61−69.
  12. L. Wang, B. Ji, Y. Hu, R. Liu, W. Sun, A review on in situ phytoremediation of mine tailings, Chemosphere, 184 (2017) 594−600.
  13. G.M. Tordoff, A.J.M. Baker, A.J. Willis, Current approaches to the revegetation and reclamation of metalliferous mine wastes, Chemosphere, 41 (2000) 219−228.
  14. F.J. Larney, D.A. Angers, The role of organic amendments in soil reclamation: a review, Can. J. Soil Sci., 92 (2012) 19−38.
  15. T. Pardo, C. Bes, M.P. Bernal, R. Clemente, Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: modeling of trace elements speciation, solubility, and plant accumulation, Environ. Toxicol. Chem., 9999 (2016) 1−11.
  16. R. Zornoza, J.A. Acosta, A. Fa, E. Bååth, Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation, Geoderma, 272 (2016) 64−72.
  17. L.S. Forsberg, J. Gustafsson, D.B. Kleja, S. Ledin, Leaching of metals from oxidizing sulphide mine tailings with and without sewage sludge application, Water Air Soil Pollut., 194 (2008) 331−341.
  18. D. Smart, S. Callery, R. Courtney, The potential for wastederived materials to form soil covers for the restoration of mine tailings in Ireland, Land Degrad. Dev., 27 (2016) 542−549.
  19. F. Moreno-Barriga, Á. Faz, J.A. Acosta, M. Soriano-Disla, S. Martínez-Martínez, R. Zornoza, Use of Piptatherum miliaceum for the phytomanagement of biochar amended technosols derived from pyritic tailings to enhance soil aggregation and reduce metal(loid) mobility, Geoderma, 307 (2017) 159−171.
  20. M. Larchevêque, A. Desrochers, B. Bussière, H. Cartier, J.S. David, Revegetation of non acid-generating, thickened tailings with boreal trees: a greenhouse study, J. Environ. Qual., 42 (2013) 351−360.
  21. A. Rodríguez-Vila, V. Asensio, R. Forján, E.F. Covelo, Chemical fractionation of Cu, Ni, Pb, and Zn in a mine soil amended with compost and biochar and vegetated with Brassica juncea L., J. Geochem. Explor., 158 (2015) 74−81.
  22. M.D. Mingorance, I. Franco, S. Rossini-Oliva, Application of different soil conditioners to restorate mine tailings with native (Cistus ladanifer L.) and non-native species (Medicago sativa L.), J. Geochem. Explor., 147 (2017) 35−45.
  23. R. Forján, A. Rodríguez-Vila, B. Cerqueira, E.F. Covelo, Comparison of the effects of compost versus compost and biochar on the recovery of a mine soil by improving the nutrient content, J. Geochem. Explor., 183 (2017) 46−57.
  24. M.A. Galende, J. Becerril, O. Barrutia, U. Artetxe, C. Garbisu, A. Hernández, Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated soil, J. Geochem. Explor., 145 (2014) 181−189.
  25. Z. Shen, A. Md Som, F. Wang, F. Jin, O. McMillan, A. Al-Tabbaa, Long-term impact of biochar on the immobilization of nickel (II) and zinc (II) and the revegetation of a contaminated site, Sci. Total Environ., 542 (2016) 771−776.
  26. S. Yang, J. Cao, F. Li, X. Peng, Q. Peng, Z. Yang, L. Chai, Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings, Environ. Sci. Process. Impacts, 18 (2016) 95−103.
  27. T. Pardo, M.P. Bernal, R. Clemente, Phytostabilization of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments, Chemosphere, 178 (2017) 556−564.
  28. B. Bussière, Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches, Can. Geotech. J., 44 (2007) 1019−1052.
  29. J.A. Burger, C.E. Zipper, How to Restore Forests on Surfacemined Land: Reclamation Guidelines for Surface Mined Land in Southwest Virginia, Publication 460-123, Virginia Cooperative Extension, Arlington, 2002.
  30. G. Fellet, L. Marchiol, G.D. Vedove, A. Peressotti, Application of biochar on mine tailings: effects and perspectives for land application, Chemosphere, 83 (2011) 1262−1267.
  31. G. Fellet, M. Marmiroli, L. Marchiol, Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar, Sci. Total Environ., 468–469 (2014) 598−608.
  32. R. Zornoza, A. Faz, D.M. Carmona, S. Martínez-Martínez, J.A. Acosta, Plant cover and soil biochemical properties in mine tailings pond five years after application of marble wastes and organic amendments, Pedosphere, 22 (2012) 22−32.
  33. A. Zanuzzi, J.M. Arocena, J.M. VanMourik, A. Faz Cano, Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology, Geoderma, 154 (2009) 69−75.
  34. C. Santibañez, M.L. De la Fuente, E. Bustamante, S. Silva, P. León-Lobos, R. Ginocchio, Potential use of organic- and hard-rock mine wastes on aided phytostabilization of largescale mine tailings under semiarid Mediterranean climatic conditions: short term field study, Appl. Environ. Soil Sci., 2012 (2012) 1–15.
  35. T. Hwang, C.M. Neculita, In situ immobilization of heavy metals in severely weathered tailings amended with food waste-based compost and zeolite, Water Air Soil Pollut., 224 (2013) 1–9.
  36. J.H. Pardo, M.P. Bernal, R. Clemente, Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soils: I. Effects on the trace elements and nutrients solubility and leaching risk, Chemosphere, 107 (2014) 121−128.
  37. F. Moreno-Barriga, V. Díaz, J.A. Acosta, M.Á. Muñoz, Á. Faz, R. Zornoza, Organic matter dynamics, soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste, Geoderma, 301 (2017) 19−29.
  38. H. Wijesekara, N.S. Bolan, M. Vithanage, Y. Xu, S. Mandal, S.L. Brown, G.M. Hettiarachchi, G.M. Pierzynski, L. Huang, Y.S. Ok, M.B. Kirkham, C.P. Saint, A. Surapaneni, Chapter two: Utilization of biowaste for mine spoil rehabilitation, Adv. Agron., 138 (2016) 97−173.
  39. M. Lebrun, C. Macri, F. Miard, N. Hattab-Hambli, M. Heino-Motelica, D. Morabito, S. Bourgerie, Effect of biochar amendments on As, Pb mobility and phytoavailability in contaminated mine technosols pytoremediated by Salix, J. Geochem. Explor., 182 (2017) 149−156.
  40. C. Santibáñez, C. Verdugo, R. Ginocchio, Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne, Sci. Total Environ., 395 (2008) 1−10.
  41. E.S. Santos, M.C.F. Magalhães, M.M. Abreu, F. Macías, Effects of organic/inorganic amendments on trace metals dispersion by leachates from sulfide-containing tailings of the São Domingos mine, Portugal, Time evaluation, Geoderma, 226–227 (2014) 188−2013.
  42. A. Valentín-Varga, R.A. Root, J.W. Neilson, J. Chorover, R.M. Maier, Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment, Sci. Total. Environ., 500–501 (2014) 314−324.
  43. J.H. Pardo, R. Clemente, P. Alvarenga, M.P. Bernal, Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation, Chemosphere, 107 (2014) 101−108.
  44. L.S. Forsberg, S. Ledin, Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings, Sci. Total Environ., 358 (2006) 21−35.
  45. B.B. Huat, S. Kazemian, A. Prasad, M. Barghchi, State of an art review of peat: general perspective, Int. J. Phys. Sci., 6 (2011) 1988−1996.
  46. P. Abad-Valle, E. Iglesias-Jiménez, E. Álvarez-Ayuso, A comparative study on the influence of the difference organic amendments on trace elements mobility and microbial functionality of a polluted mine soil, J. Environ. Manage., 188 (2017) 287−296.
  47. J. Gil-Loaiza, S.A. White, R.A. Root, F.A. Solís-Dominguez, C.M. Hammond, J. Chorover, R.M. Maier, Phytostabilization of mine tailings using compost-assisted direct planting: translating greenhouse results to the field, Sci. Total Environ., 565 (2016) 451−461.
  48. Q. Fang, Y. Wei, J. Liu, D.S. Kosson, H.A. Van der Sloot, P. Zhang, Effects of aerobic and anaerobic biological process on leaching of heavy metals from soil amended with sewage sludge compost, Waste Manage., 58 (2016) 324–334.
  49. E.I. Jiménez, V.P. Garcia, Evaluation of city refuse compost maturity: a review, Biol. Wastes, 27 (1989) 115−142.
  50. M.P. Bernal, J.A. Alburquerque, R. Moral, Composting of animal manure and chemical criteria for compost maturity assessment. A review, Bioresour. Technol., 100 (2009) 5444−5453.
  51. S.L. Brown, R.L. Chaney, Use of amendments to restore ecosystem function to metal mining-impacted sites: tools to evaluate efficacy, Curr. Pollut. Rep., 2 (2016) 91−102.
  52. M.P. Bernal, S.G. Sommer, D. Chadwick, C. Qing, L. Guoxue, F.C. Michel, Jr., Chapter three - current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits, Adv. Agron., 144 (2017) 143−233.
  53. B. Singh, B.P. Singh, A.L. Cowie, Characterisation and evaluation of biochars for their application as a soil amendment, Aust. J. Soil. Res., 48 (2010) 516−525.
  54. A. Méndez, A. Gómez, J. Paz-Ferreiro, G. Gascó, Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil, Chemosphere, 89 (2012) 1354−1359.
  55. A.A. Sobek, W.A. Schuller, J.R. Freeman, R.M. Smith, Field and Laboratory Methods Applicable to Overburdens and Mine Soils, EPA-600/2-78-054, Industrial Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.
  56. S. Brown, M. Sprenger, A. Maxemchuk, H. Compton, Ecosystem function in alluvial tailings after biosolids and lime addition, J. Environ. Qual., 34 (2005) 139–148.
  57. T.-T. Yang, J. Liu, W.-C. Chen, X. Chen, H.-Y. Shu, P. Jia, B. Liao, W.-S. Shu, J.-T. Li, Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings, Soil Biol. Biochem., 114 (2017) 52−58.
  58. P. Schwab, D. Zhu, M.K. Banks, Heavy metals leaching from mine tailings as affected by organic amendments, Bioresour. Technol., 98 (2007) 2935−2941.
  59. S. Kabas, A. Faz, J.A. Acosta, R. Zornoza, S. Martínez-Martínez, D.M. Carmona, J. Bech, Effect of marble waste and pig slurry on the growth of native vegetation and heavy metal mobility in a mine tailing pond, J. Geochem. Explor., 123 (2012) 69−76.
  60. S.L. Brown, C.L. Henry, R. Chaney, H. Compton, P.S. DeVolder, Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas, Plant Soil, 249 (2003) 203−215.
  61. C. Lazcano, M. Gómez-Brandón, J. Domínguez, Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure, Chemosphere, 72 (2008) 1013−1019.
  62. C.O. Onwosi, V.C. Igbokwe, J.N. Odimba, I.E. Eke, M.O. Nwankwoala, I.N. Iroh, L.I. Ezeogu, Composting technology in waste stabilization: on the methods, challenges and future prospects, J. Environ. Manage., 190 (2017) 140−157.
  63. C. Garcia, T. Hernandez, C. Costa, M. Ayuso, Evaluation of the maturity of municipal waste compost using simple chemical parameters, Commun. Soil Sci. Plant Anal., 23 (1992) 1501−1512.
  64. M. Li, I. Mohamed, D. Raleve, W. Chen, Q. Huang, Field evaluation of intensive compost application on Cd fractionation and phytoavailability in a mining-contaminated soil, Environ. Geochem. Health, 36 (2016) 1193−1201.
  65. A. Shiralipour, D.B. McConnell, W.H. Smith, Uses and benefits of MSW compost: a review and assessment, Biomass Bioenergy, 3 (1992) 267−279.
  66. S. Renault, J. Markham, L. Davis, A. Sabra, C. Szczerski, Revegetation of Tailings at the Gunmar Mine Site, Manitoba (NTS52L14): Plant Growth in Tailings Amended with Paper- Mill Sludge. Report of activity, Manitoba Geological Survey, 2007, p. 161–165.
  67. M. Barajas-Aceves, R. Rodríguez-Vásquez, Effects of organic amendments on the mobility of Pb and Zn from mine tailings added to semi-arid soils, J. Environ. Sci. Health, Part B, 48, (2013) 226−236.
  68. M. Touceda-González, V. Álvarez-López, A. Prieto-Fernández, B. Rodríguez-Garrido, C. Trasar-Cepeda, M. Mench, M. Puschenreiter, C. Quintela-Sabarís, F. Macías-García, P.S. Kidd, Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings, J. Environ. Manage., 186 (2017) 301−313.
  69. P.M. Rutherford, J.M. Arocena, Organic amendments and earthworm addition improve propertied of nonacidic mine tailings, Appl. Environ. Soil. Sci., 2012 (2012) 1–11.
  70. B.J. Lindsay, K.D. Wakeman, O.F. Rowe, B.M. Grail, C.J. Ptacek, D.W. Blowes, D.B. Johnson, Microbiology and geochemistry of mine tailings amended with organic carbon for passive treatment of pore water, Geomicrobiol. J., 28 (2011) 229−241.
  71. T. Pardo, R. Clemente, M.P. Bernal, Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities, Chemosphere, 84 (2011) 642−650.
  72. M. Uchimiya, S. Chang, K.T. Klasson, Screening biochars for heavy metal retention in soil: role of oxygen functional groups, J. Hazard. Mater., 190 (2011) 432−441.
  73. M. Ahmad, A.U. Rajapaksha, J.E. Zhang, M. Lim, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19−33.
  74. R. Forján, V. Asension, A. Rodríguez-Vila, E.F. Covelo, Contribution of waste and biochar amendments to the sorption of metals in a copper mine tailings, Catena, 137 (2016) 120−125.
  75. R.-L. Zheng, C. Cai, J.-H. Liang, Q. Huang, Z. Chen, Y.-Z. Huang, H.P.H. Arp, G.-X. Sun, The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings, Chemosphere, 89 (2012) 856−862.
  76. S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph, H. Yang, D. Zhang, Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions, Chemosphere, 142 (2016) 64−71.
  77. L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environ. Pollut., 158 (2010) 2282–2287.
  78. M.B.J. Lindsay, D.W. Blowes, P.D. Condon, K.G. Lear, C.J. Ptacek, Evaluation of Organic Carbon Amendments for Passive In Situ Management of Tailings Pore-Water Quality, Proc. of the 8th International Conference on Acid Rock Drainage, June 23–26, Skellefteå, Sweden, 2009, 10 p.
  79. D.A. Angers, J. Caron, Plant-induced change in soil structure: processes and feedbacks, Biogeochemistry, 42 (1998) 55−72.
  80. L. Beesley, M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. Vamerali, M. Bandiera, N. Marmirolu, Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.), Sci. Total Environ., 454–455 (2013) 598−603.
  81. A.R.A. Usman, Y. Kuzyakov, K. Stahr, Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes, Water Air Soil Pollut., 158 (2004) 401−418.
  82. M. Farrell, D.L. Jones, Use of compost in the remediation of heavy metal contaminated soil, J. Hazard. Mater., 175 (2010) 575−582.
  83. P. Alvarenga, A. De Varennes, A.C. Cunha-Queda, The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a minecontaminated soil, Int. J. Phytoremediation, 16 (2014) 138–154.
  84. S. Wang, C.N. Mulligan, Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid, Chemosphere, 74 (2009) 274–279.
  85. L. Beesley, O.S. Inneh, G.J. Norton, E. Moreno-Jimenez, T. Pardo, R. Clemente, J.C. Dawson, Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil, Environ. Pollut., 186 (2014) 195–202.
  86. E. Arco-Lázaro, I. Agudo, R. Clemente, M.P. Bernal, Arsenic (V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition, Environ. Pollut., 216 (2016) 71–79.
  87. R. Zornoza, M. Gómez-Garrido, S. Martínez-Martínez, M.D. Gómez-López, Á. Faz, Bioaugmentaton in Technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization, Sci. Total Environ., 593– 594 (2017) 357–367.
  88. M. Uchimiya, K.T. Klasson, L.H. Wartelle, I.M. Lima, Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations, Chemosphere, 82 (2011) 1431–1437.
  89. J. Kumpiene, A. Lagerkvist, C. Maurice, Stabilization of As, Cr, Pb and Zn in soil using amendments, Waste Manage., 28 (2008) 215–225.
  90. M. Guittonny-Larchevêque, C. Pednault, Substrate comparison for short-term success of a multispecies tree plantation in thickened tailings of a boreal gold mine, New Forests, 47 (2016) 763–781.
  91. R.-H. Zhang, Z.-G. Li, X.-D. Liu, B. Wang, G.-L. Zhou, X.-X. Huang, C.-F. Lin, A. Wang, M. Brooks, Immobilization and bioavailability of heavy metals in green house soils amended with rice straw-derived biochar, Ecol. Eng., 98 (2017) 183−188.
  92. R.X. Cao, L.Q. Ma, M. Chen, S.P. Singh, W.G. Harris, Phosphateinduced metal immobilization in a contaminated site, Environ. Pollut., 122 (2003) 19−28.
  93. O. Barrutia, U. Artetxe, A. Hernández, J.M. Olano, J.I. García-Plazaola, C. Garbisu, M. Becerril, Native plant communities in an abandoned Pb–Zn mining area of Northern Spain: implications for phytoremediation and germplasm preservation, Int. J. Phytoremediation, 13 (2011) 256−270.
  94. J. Vangronsveld, R. Herzig, N. Weyens, J. Boulet, K. Adriaensen, A. Ruttens, T. Thewys, A. Vassilev, E. Meers, E. Nehnevajova, D. Van der Lelie, M. Mench, Phytoremediation of contaminated soils and groundwater: lessons from the field, Environ. Sci. Pollut. Res., 16 (2009) 765–794.
  95. D. Campbell, K. Stewart, G. Spiers, P. Beckett, Growth and metal uptake of canola and sunflower along a thickness gradient of organic-rich covers over metal mine tailings, Ecol. Eng., 109 (2017) 133−139.
  96. Y. Zhang, J. Liu, Y. Zhou, T. Gong, J. Wang, Y. Ge, Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1, J. Hazard. Mater., 260 (2013) 1100−1107.
  97. L. Huang, Y. Li, M. Zhao, Y. Chao, R. Qiu, Y. Yang, S. Wang, Potential of Cassia alata L. coupled with biochar for heavy metal stabilization in multi-metal mine tailings, Int. J. Environ. Res. Public Health, 15 (2018) 494.
  98. M.D.C. González-Chávez, R. Carrillo-González, M.I.H Godínez, S.E. Lozano, Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus, Int. J. Phytoremediation, 19 (2017) 174−182.
  99. E.J. Lam, M. Cánovas, M.E. Gálvez, I.L. Montofré, B.F. Keith, A. Faz, Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile, J. Geochem. Explor., 182 (2017) 210−217.
  100. F. Wang, Occurrence of arbuscular mycorrhizal fungi in miningimpacted sites and their contribution to ecological restoration: mechanisms and applications, Crit. Rev. Environ. Sci. Technol., 47 (2017) 1901–1957.
  101. B.D. Chen, Y.-G. Zhu, X.Y. Xiao, S.E. Smith, Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings, Environ. Pollut., 147 (2007) 374–380.
  102. B.M. Ohsowski, K. Dunfield, J.N. Klironomos, M.M. Hart, Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits, Restor. Ecol., 26 (2017) 63–72.
  103. L. Setyaningsih, Y. Setiadi, S.W. Budi, Hamim, D. Sopandie, Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi,. Earth Environ. Sci., 58 (2017) 1–12.
  104. Y. Ma, N.M. Dickinson, M.H. Wong, Interactions between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China, Soil Biol. Biochem., 35 (2003) 1369–1379.
  105. E. Ruiz, L. Rodríguez, J. Alonso-Azcárate, Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants, Chemosphere, 75 (2009) 1035−1041.
  106. Y. Ma, N.M. Dickinson, M.H. Wong, Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings, Soil Biol. Biochem., 38 (2006) 1403–1412.
  107. T. Sizmur, M.E. Hodson, Do earthworms impact metal mobility and availability in soil? – a review, Environ. Pollut., 157 (2009) 1981–1989.
  108. S.K. Mishra, F.J. Hitzhusen, B.L. Sohngen, J.-M. Guldmann, Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio, J. Environ. Manage., 100 (2012) 52–58.
  109. R.D. Espinoza, J.W.F. Morris, Towards sustainable mining (part II): accounting for mine reclamation and post reclamation care liabilities, Resour. Policy, 52 (2017) 29–38.
  110. C.N. Kelly, C.D. Peltz, M. Stanton, D.W. Rutherford, C.E. Rostad, Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption, Appl. Geochem., 43 (2014) 35–48.
  111. F. Moreno-Barriga, V. Díaz, J.A. Acosta, M.Á. Muñoz, Á. Faz, R. Zornoza, Creation of technosols to decrease metal availability in pyritic tailings with addition of biochar and marble waste, Land Degrad. Dev., 28 (2017) 1943–1951.
  112. J.A. Ippolito, C.M. Berry, D.G. Strawn, J.M. Novak, J. Levine, A. Harley, Biochars reduce mine land soil bioavailable metals, J. Environ. Qual., 46 (2017) 411−419.
  113. F. You, R. Dalal, L. Huanga, Biochar and biomass organic amendments shaped different dominance of lithoautotrophs and organoheterotrophs in microbial communities colonizing neutral copper(Cu)-molybdenum(Mo)-gold(Au) tailings, Geoderma, 309 (2018) 100−110.
  114. L. Rodríguez, R. Gómez, V. Sánchez, J. Alonso-Azcárate, Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings, Environ. Sci. Pollut. Res., 23 (2016) 6046−6054.
  115. M.B.J. Lindsay, D.W. Blowes, P.D. Condon, C.J. Ptacek, Organic carbon amendments for passive in situ treatment of mine drainage: field experiments, Appl. Geochem., 26 (2011) 1169−1183.
  116. M.A. Muñoz, J.G. Guzman, R. Zornoza, F. Moreno, A. Faz, R. Lal, Effects of biochar and marble mud on mine waste properties to reclaim tailings ponds, Land Degrad. Dev., 24 (2016) 1227−1235.