1. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  2. K. Tamaoki, N. Saito, T. Nomura, Y. Konishi, Microbial recovery of rhodium from dilute solutions by the metal ion–reducing bacterium Shewanella algae, Hydrometallurgy, 139 (2013) 26–29.
  3. J. Li, X. Wang, H. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions, Environ. Sci.: Nano, 4 (2017) 1114–1123.
  4. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  5. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy. Environ. Sci., 8 (2015) 2296–2319.
  6. K. Laxman, M.T.Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov, J. Dutta, Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes, Desalination, 362 (2015) 126–132.
  7. I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes, Electrochim. Acta, 153 (2015) 106–114.
  8. X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environ. Sci. Technol., 49 (2015) 10920–10926.
  9. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: A critical review, Water Res., 75 (2015) 164–187.
  10. M. Biro, D.B. Vončina, Innovative approach to treating waste waters by a membrane capacitive deionisation system, Chem. Pap., 70 (2016) 576–584.
  11. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbon- based composite materials for capacitive deionization, RSC Adv., 5 (2015) 15205–15225.
  12. K. Laxman, L.A. Gharibi, J. Dutta, Capacitive deionization with asymmetric electrodes: Electrode capacitance vs electrode surface area, Electrochim. Acta, 176 (2015) 420–425.
  13. K. Laxman, M.T.Z. Myint, R. Khan, T. Pervez, J. Dutta, Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell, Electrochim. Acta, 166 (2015) 329–337.
  14. H.-J. Liu, J. Wang, C.-X. Wang, Y.-Y. Xia, Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor, Adv. Energy Mater., 1 (2011) 1101–1108.
  15. K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel, A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization, Environ. Sci. Technol., 49 (2015) 3040–3047.
  16. K. Laxman, M.T.Z. Myint, R. Khan, T. Pervez, J. Dutta, Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water, Desalination, 359 (2015) 64–70.
  17. Y. Qu, T.F. Baumann, J.G. Santiago, M. Stadermann, Characterization of resistances of a capacitive deionization system, Environ. Sci. Technol., 49 (2015) 9699–9706.
  18. K. Sharma, Y.H. Kim, J. Gabitto, R.T. Mayes, S. Yiacoumi, H.Z. Bilheux, L.M.H. Walker, S. Dai, C. Tsouris, Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions, Langmuir, 31 (2015) 1038–1047.
  19. F. Zaera, Probing liquid/solid interfaces at the molecular level, Chem. Rev., 112 (2012) 2920–2986.
  20. H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena, Academic Press, Cambridge, Massachusetts, 2006.
  21. P.M. Biesheuvel, Y. Fu, M.Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes, Phys. Rev. E, 83 (2011) 061507.
  22. P.M. Biesheuvel, S. Porada, M. Levi, M.Z. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18 (2014) 1365–1376.
  23. P.M. Biesheuvel, M.E. Suss, H.V.M. Hamelers, Theory of water desalination by porous electrodes with fixed chemical charge, arXiv:1506.03948, (2015).
  24. S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison, K.J. Keesman, S. Kaskel, P.M. Biesheuvel, V. Presser, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy. Environ. Sci., 6 (2013) 3700–3712.
  25. P.M. Biesheuvel, B. van Limpt, A. van der Wal, Dynamic adsorption/desorption process model for capacitive deionization, J. Phys. Chem. C, 113 (2009) 5636–5640.
  26. P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360 (2011) 239– 248.
  27. J.E. Dykstra, R. Zhao, P.M. Biesheuvel, A. van der Wal, Resistance identification and rational process design in capacitive deionization, Water Res., 88 (2016) 358–370.
  28. B.G. Jeon, H.C. No, Development of a two-dimensional coupled- implicit numerical tool for analysis of the CDI operation, Desalination, 288 (2012) 66–71.
  29. J.-H. Ryu, T.-J. Kim, T.-Y. Lee, I.-B. Lee, A study on modeling and simulation of capacitive deionization process for wastewater treatment, J. Taiwan Inst. Chem. E, 41 (2010) 506–511.
  30. R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der Wal, Charge efficiency: a functional tool to probe the double- layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1 (2010) 205–210.
  31. Y.A.C. Jande, W.S. Kim, Predicting the lowest effluent concentration in capacitive deionization, Sep. Purif. Technol., 115 (2013) 224–230.
  32. M. Andelman, Flow through capacitor basics, Sep. Purif. Technol., 80 (2011) 262–269.
  33. T.-Y. Ying, K.-L. Yang, S. Yiacoumi, C. Tsouris, Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel, J. Colloid Interface Sci., 250 (2002) 18–27.
  34. O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes, C. Hidrovo, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314 (2013) 130–138.
  35. L.D. Landau, G. Zito, Digital Control Systems: Design, Identification and Implementation, Springer-Verlag, 2006.
  36. T. Kailath, Linear Systems, Prentice Hall, 1980.
  37. W. Cheney, D. Kincaid, Numerical Mathematics and Computing, Brooks-Cole, 2012.
  38. C. Brasquet, P. Le Cloirec, Effects of activated carbon cloth surface on organic adsorption in aqueous solutions. use of statistical methods to describe mechanisms, Langmuir, 15 (1999) 5906–5912.
  39. J.W. Shim, S.J. Park, S.K. Ryu, Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers, Carbon, 39 (2001) 1635–1642.
  40. J.-H. Lee, W.-S. Bae, J.-H. Choi, Electrode reactions and adsorption/ desorption performance related to the applied potential in a capacitive deionization process, Desalination, 258 (2010) 159–163.
  41. C. Wang, H. Song, Q. Zhang, B. Wang, A. Li, Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration, Desalination, 365 (2015) 407–415.