References

  1. J. Li, China gears up to tackle tainted water, Nature, 499 (2013) 14–15.
  2. Z. Xu, G.D. Gao, B.C. Pan, A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation, Water Res., 87 (2015) 378–384.
  3. M. Solís, A. Solís, H.I. Pérez, Microbial decolorization of azo dyes: a review. Process Biochem., 47 (2012) 1723–1748.
  4. L.C. Fang, P. Cai, P.X. Li, Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals, J. Hazard. Mater., 181 (2010) 1031–1038.
  5. P.K. Rai, Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach, Int. J. Phytorem., 10 (2008) 133–160.
  6. R.P. Chen, Y.L. Zhang, L.F. Shen, Lead (II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid, Chem. Eng. J., 268 (2015) 348–355.
  7. M. Hunsom, K. Pruksathorn, S. Damronglerd, H. Vergnes, P. Duverneuil, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction, Water Res., 39 (2005) 610–616.
  8. C.D. Shuang, P.H. Li, A.M. Li, Quaternized magnetic microspheres for the efficient removal of reactive dyes, Water Res., 46 (2012) 4417–4426.
  9. G.S. Simate, S.E. Iyuke, S. Ndlovu, The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes, Water Res., 4 (2012) 1185–1197.
  10. S. Anandan, P.S. Kumar, N. Pugazhenthiran, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88, Sol. Energy Mater. Sol. Cells, 92 (2008) 929–937.
  11. L. Yu, W.W. Li, M.H.W. Lam, Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production, Appl. Microbiol. Biotechnol., 95 (2012) 255–262.
  12. A. Özcan, M. Gençten, Investigation of acid red 88 oxidation in water by means of electro-Fenton method for water purification, Chemosphere, 146 (2016) 245–252.
  13. T. Robinson, B. Chandran, P. Nigam, Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption, Bioresour. Technol., 85 (2002) 119–124.
  14. N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, J. Hazard. Mater., 151 (2008) 1–8.
  15. S. Hsu, P.C. Singer, Removal of bromide and natural organic matter by anion exchange, Water Res., 44 (2010) 2133–2140.
  16. F. Ferrero, Adsorption of methylene blue on magnesium silicate: kinetics, equilibria and comparison with other adsorbents, J. Environ. Sci., 22 (2010) 467–473.
  17. Q. Huang, M.Y. Liu, J.Y. Chen, Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes, Appl. Surf. Sci., 419 (2017) 35–44.
  18. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost sorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  19. B.H. Hameed, A.T.M. Din, A.L. Ahmad, Sorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
  20. R. Jiang, Y.Q. Fu, H.Y. Zhu, Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: adsorption kinetics and equilibrium, J. Appl. Polym. Sci., 125 (2012) 540–549.
  21. G. Crini, Studies on adsorption of dyes on beta-cyclodextrin polymer, Bioresour. Technol., 90 (2003) 193–198.
  22. D.D. Asouhidou, K.S. Triantafyllidis, N.K. Lazaridis, Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas, Colloids Surf., A, 346 (2009) 83–90.
  23. J. Lin, Y. Zhan, Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites, Chem. Eng. J., 200 (2012) 202–213.
  24. T.S. Anirudhan, C.D. Bringle, S. Rijith, Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay, Desal. Wat. Treat., 12 (2009) 16–27.
  25. J. Hizal, R. Apak, Modeling of cadmium(II) adsorption on kaolinite-based clays in the absence and presence of humic acid, Appl. Clay Sci., 32 (2006) 232–244.
  26. L. Carlos, M. Cipollone, D.B. Soria, The effect of humic acid binding to magnetic nanoparticles on the photogeneration of reactive oxygen species, Sep. Purif. Technol., 91 (2012) 23–29.
  27. H. Yang, B. Yuan, Y.B. Lu, R.S. Cheng, Preparation of magnetic chitosan microspheres and its applications in wastewater treatment, Sci. China, Ser. B, 52 (2009) 249–256.
  28. Y.X. Huang, A. Keller Arturo, EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment, Water Res., 80 (2015) 159–168.
  29. R.P. Chen, Y.L. Zhang, X.Y. Wang, Removal of methylene blue from aqueous solution using humic-acid coated magnetic nanoparticles, Desal. Wat. Treat., 55 (2015) 539–548.
  30. W.P. Liu, J.Q. Ma, C.S. Shen, A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water, Water Res., 90 (2016) 24–33.
  31. J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  32. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1402.
  33. H.M.F. Freundlich, Ueber die Adsorption in Loesungen, Z. Phys. Chem., 57 (1906) 385–470.
  34. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  35. J. Dai, H. Yan, H. Yang, Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions, Chem. Eng. J., 165 (2010) 240–249.
  36. H. Yan, H.J. Li, X. Tao, Rapid removal and separation of Iron(II) and manganese(II) from micropolluted water using magnetic grapheme oxide, ACS Appl. Mater. Interfaces, 6 (2014) 9871–9880.
  37. R.A. Alvarez-Puebla, J.J. Garrido, Effect of pH on the aggregation of a gray humic acid in colloidal and solid states, Chemosphere, 59 (2005) 659–667.
  38. S.T. Yang, P.F. Zong, X.M. Ren, Rapid and high-efficient preconcentration of Eu by core-shell structured Fe3O4@humic acid magnetic nanoparticles, ACS Appl. Mater. Interfaces, 12 (2012) 6890–6899.
  39. E. Illes, E. Tombacz, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Colloid Interface Sci., 295 (2006) 115–123.