References

  1. M.R. Awual, M.M. Hasan, A. Shahat, Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater, Sens. Actuators, B, 203 (2014) 854–863.
  2. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment, NIH-PA, 101 (2012) 133–164.
  3. R. Padmavathi, M. Minnoli, D. Sangeetha, Removal of heavy metal ions from waste water using anion exchange polymer membranes, Int. J. Plast. Technol., 18 (2014) 88–99.
  4. M.W. Murad, J. Pereira, Malaysia: Environmental Health Issues, Encyclopedia of Environmental Health, 2011, pp. 577–594.
  5. N.H. Ab Razak, S.M. Praveena, A.Z. Aris, Z. Hashim, Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia), J. Epidemiol. Glob. Health, 5 (2015) 297–310.
  6. J. Albretsen, The toxicity of iron, an essential element, Vet. Med., 101 (2006) 82–90.
  7. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7 (2014) 60–72.
  8. S.D. Engineering, Drinking Water Quality Standard, Ministry of Health Malaysia, 2010, Available at: http://kmam.moh.gov.my/public-user/drinking-water-quality-standard.html [accessed January 12, 2017].
  9. R.K. Gautam, A. Mudhoo, G. Lofrano, M.C. Chattopadhyaya, Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration, J. Environ. Chem. Eng., 2 (2014) 239–259.
  10. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  11. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  12. P. Lu, Y.-L. Hsieh, Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydr. Polym., 87 (2012) 564–573.
  13. S. Thomas, S.A. Paul, L.A. Pothan, B. Deepa, Natural Fibres: Structure, Properties and Applications, S. Kalia, B.S. Kaith, I. Kaur, Eds., Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer Berlin Heidelberg, 2011.
  14. Y. Oladosu, M.Y. Rafii, N. Abdullah, U. Magaji, G. Hussin, A. Ramli, G. Miah, Fermentation quality and additives: a case of rice straw silage, Biomed. Res. Int., 2016 (2016) 1–14.
  15. J. He, J.P. Chen, A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools, Bioresour. Technol., 160 (2014) 67–78.
  16. S. Bramhe, T.N. Kim, A. Balakrishnan, M.C. Chu, Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowires, Mater. Lett., 135 (2014) 195–198.
  17. I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study, Arabian J. Chem., 5 (2012) 439–446.
  18. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J., 231 (2013) 512–518.
  19. M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng., 45 (2014) 518–526.
  20. G. Zuo, Y. Wan, L. Wang, C. Liu, F. He, H. Luo, Synthesis and characterization of laminated hydroxyapatite/chitosan nanocomposites, Mater. Lett., 64 (2010) 2126–2128.
  21. W.S. Wan Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  22. S.K.R. Yadanaparthi, D. Graybill, R. von Wandruszka, Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters, J. Hazard. Mater., 171 (2009) 1–15.
  23. G.B. Gholikandi, H.R. Sadabad, S. Karami, H. Masihi, Heavy metal ions removal from waste-activated sludge by Fered- Fenton electrochemical advanced oxidation process (EAOP) with the aim of agricultural land application, Desal. Wat. Treat., 93 (2017) 250–256.
  24. K.H. Lim, Rice Variety Mr 127, Malaysian Agricultural Research and Development Institute, 1991, Available at: http://agromedia.mardi.gov.my/magritech/tech_detail_fdcrop.php [accessed November 1, 2016].
  25. M.M. Ariffin, N.I. Yatim, S. Hamzah, Synthesis and characterization of hydroxyapatite from bulk seashells and its potential usage as lead ions adsorbent, Malaysian J. Anal. Sci., 21 (2017) 571–584.
  26. L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015) 9759–9770.
  27. S. Lagergren, Zur theorie der sogenannten adsorption gelster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  28. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–827.
  29. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., B136 (2006) 681–689.
  30. R. Tabaraki, A. Nateghi, S. Ahmady-Asbchin, Biosorption of lead (II) ions on Sargassum ilicifolium: application of response surface methodology, Int. Biodeterior. Biodegrad., 93 (2014) 145–152.
  31. H. Freundlich, Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption, Trans. Faraday Soc., 28 (1932) 195–201.
  32. I. Langmuir, The sorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  33. N. Ahalya, R.D. Kanamadi, T.V. Ramachandra, Biosorption of iron(III) from aqueous solutions using the husk of Cicer arientinum, Indian J. Chem. Technol., 13 (2006) 122–127.
  34. K. Pakshirajan, T. Swaminathan, Biosorption of lead, copper, and cadmium by Phanerochaete chrysosporium in ternary metal mixtures: statistical analysis of individual and interaction effects, Appl. Biochem. Biotechnol., 158 (2009) 457–469.
  35. G.M. Naja, V. Murphy, B. Volesky, Biosorption, Metals, Encyclopedia of Industrial Biotechnology, John Wiley & Sons, Inc., Hoboken, 2010, pp. 1–29.
  36. L.K. Wang, J.P. Chen, Y.-T. Hung, N.K. Shammaz, Heavy Metals in the Environment, CRC Press, Boca Raton, 2009.
  37. P.B. Kelter, M.D. Mosher, A. Scott, Chemistry: The Practical Science, vol. 10, Cengage Learning, Boston, 2008, pp. 320–322.
  38. E. Wiberg, N. Wiberg, Inorganic Chemistry, Academic Press, California, 2001, pp. 119–121.
  39. A. Kamari, S.N.M. Yusoff, F. Abdullah, W.P. Putra, Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: adsorption and characterisation studies, J. Environ. Chem. Eng., 2 (2014) 1912–1919.
  40. A.L. Giraldo-Betancur, D.G. Espinosa-Arbelaez, A.D. Real-López, B.M. Millan-Malo, E.M. Rivera-Muñoz, E. Gutierrez-Cortez, P. Pineda-Gomez, S. Jimenez-Sandoval, M.E. Rodriguez-García, Comparison of physicochemical properties of bio and commercial hydroxyapatite, Curr. Appl. Phys., 13 (2013) 1383–1390. [41 J.H. Shariffuddin, M.I. Jones, D.A. Patterson, Greener photocatalysts: hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater, Chem. Eng. Res. Des., 91 (2013) 1693–1704.
  41. V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater, Chem. Eng. J., 254 (2014) 491–502.
  42. M.N. Mahamad, M.A.A. Zaini, Z.A. Zakaria, Preparation and characterization of activated carbon from pineapple waste biomass for dye removal, Int. Biodeterior. Biodegrad., 102 (2015) 274–280.
  43. A. Aeisyah, M.H.S. Ismail, K. Lias, S. Izhar, Adsorption process of heavy metals by low-cost adsorbent: a review, Res. J. Chem. Environ., 18 (2014) 91–102.
  44. M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models, Bioresour. Technol., 113 (2012) 97–101.
  45. S.-P. Wu, X.-Z. Dai, J.-R. Kan, F.-D. Shilong, M.-Y. Zhu, Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater, Chinese Chem. Lett., 28 (2017) 625–632.
  46. P. Khare, A. Yadav, J. Ramkumar, N. Verma, Microchannelembedded metal-carbon-polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions, Chem. Eng. J., 293 (2016) 44–54.
  47. N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius, S. Gaspard, Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: a new method for calculating the specific surface area, Microporous Mesoporous Mater., 111 (2008) 517–522.
  48. W.M. Mousa, S.I. Soliman, H.A. Shier, Removal of some heavy metals from aqueous solution using rice straw, J. Appl. Sci. Res., 9 (2013) 1696–1701.
  49. S. Rungrodnimitchai, Modification of rice straw for heavy metal ion adsorbents by microwave heating, Macromol. Symp., 295 (2010) 100–106.
  50. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical, J. Colloid Interface Sci., 47 (1974) 755–765.
  51. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smithm, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., (1960) 3973–3993.
  52. P. Chand, A.K. Shil, M. Sharma, Y.B. Pakade, Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics, Int. Biodeterior. Biodegrad., 90 (2014) 8–16.
  53. B.A. Shah, A.V. Shah, P.M. Shah, Sorption isotherms and column separation of Cu(II) And Zn(II) using ortho substituted benzoic acid chelating resins, Arch. Appl. Sci. Res., 3 (2011) 327–341.
  54. J.C. Igwe, A.A. Abia, Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA-modified maize husk, Electron J. Biotechnol., 10 (2007) 536–548.
  55. S.K. Bozbaş, Y. Boz, Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution, Process Saf. Environ. Prot., 103 (2016) 144–152.
  56. P. Chand, Y.B. Pakade, Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution, Environ. Sci. Pollut. Res., 22 (2015) 10919–10929.
  57. M. Tsezos, Biosorption: a mechanistic approach, Adv. Biochem. Eng./Biotechnol., 141 (2014) 173–209.
  58. K. Tsekova, D. Todorova, S. Ganeva, Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger, Int. Biodeterior. Biodegrad., 64 (2010) 447–451.
  59. M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resour. Ind., 6 (2014) 1–17.
  60. K.A. Krishnan, K.G. Sreejalekshmi, R.S. Baiju, Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith, Bioresour. Technol., 102 (2011) 10239–10247.