1. M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution, J. Colloid. Interf. Sci., 440 (2015) 272–281.
  2. A. Nezamzadeh-Ejhieh, M. Kabiri-Samani, Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime, J. Hazard. Mater., 260 (2013) 339–349.
  3. A. Naghash, A. Nezamzadeh-Ejhieh, Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions, J. Ind. Eng. Chem., 31 (2015) 185–191.
  4. W.Z. Tang, H. An, Photocatalytic degradation kinetics and mechanism of Acid-Blue-40 by TiO2/UV in aqueous-solution, Chemosphere, 31 (1995) 4171–4183.
  5. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review, Appl. Catal. B-Environ., 49 (2004) 1–14.
  6. Y.M. Slokar, A.M. Le Marechal, Methods of decoloration of textile wastewaters, Dyes Pigments, 37 (1998) 335–356.
  7. O.J. Hao, H. Kim, P.C. Chiang, Decolorization of wastewater, Crit. Rev. Env. Sci. Tec., 30 (2000) 449–505.
  8. M. Sleiman, P. Conchon, C. Ferronato, J.M. Chovelon, Iodosulfuron degradation by TiO2 photocatalysis: Kinetic and reactional pathway investigations, Appl. Catal. B-Environ., 71 (2007) 279–290.
  9. N.H. Ince, D.T. Gonenc, Treatability of a textile azo dye by UV/ H2O2, Environ. Technol., 18 (1997) 179–185.
  10. W.G. Kuo, Decolorizing dye wastewater with Fenton’s reagent, Water Res., 26 (1992) 881–886.
  11. J. Madhavan, P. Maruthamuthu, S. Murugesan, S. Anandan, Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent, Appl. Catal. B-Environ., 83 (2008) 8–14.
  12. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269–278.
  13. M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension, Appl. Catal. B-Environ., 69 (2007) 164–170.
  14. M. Saquib, M. Abu Tariq, M. Faisal, M. Muneer, Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide, Desalination, 219 (2008) 301–311.
  15. C.G. Silva, W.D. Wang, J.L. Faria, Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation, J. Photoch. Photobio. A., 181 (2006) 314–324.
  16. M. Stylidi, D.I. Kondarides, X.E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Appl. Catal. B-Environ., 47 (2004) 189–201.
  17. C. Su, B.Y. Hong, C.M. Tseng, Sol-gel preparation and photocatalysis of titanium dioxide, Catal. Today, 96 (2004) 119–126.
  18. J.H. Sun, X.L. Wang, J.Y. Sun, R.X. Sun, S.P. Sun, L.P. Qiao, Photocatalytic degradation and kinetics of Orange G using nanosized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. a-Chem., 260 (2006) 241–246.
  19. S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron oxide onto an Iranian clinoptilolite as a heterogeneous catalyst for photodegradation of furfural in a wastewater sample, Desal. Water Treat., 57 (2016) 10802–10814.
  20. Z.A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Water Treat., 57 (2016) 16483– 16494.
  21. A. Besharati-Seidani, Photocatalytic oxidation of an organophosphorus simulant of chemical warfare agent by modified TiO2 nanophotocatalysts, Iran J. Catal., 6 (2016) 447–454.
  22. A. Mills, S. LeHunte, An overview of semiconductor photocatalysis, J. Photoch. Photobio. A., 108 (1997) 1–35.
  23. P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS-NiS semiconductors onto clinoptilolite nano-particles to improve its activity in photodegradation of 2-nitrotoluene, Rsc Adv., 5 (2015) 75300–75310.
  24. A. Pourtaheri, A. Nezamzadeh-Ejhieh, Enhancement in photocatalytic activity of NiO by supporting onto an Iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule, Spectrochim. Acta A., 137 (2015) 338– 344.
  25. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  26. M.A. Aguado, J. Gimenez, S. Cerveramarch, Continuous photocatalytic treatment of Cr(VI) effluents with semiconductor powders, Chem. Eng. Commun., 104 (1991) 71–85.
  27. S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Commun., 200 (2013) 448–470.
  28. T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, A review of intensification of photocatalytic processes, Chem. Eng. Process., 46 (2007) 781–789.
  29. H. Derikvandia, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater., 321 (2017) 629–638.
  30. J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution, J. Hazard. Mater., 316 (2016) 194–203.
  31. M. Bordbar, S. Forghani-Pilerood, A. Yeganeh-Faal, Enhanced photocatalytic activity of sonochemical derived ZnO via the co-doping process, Iran J. Catal., 6 (2016) 415–421.
  32. A. Nezamzadeh-Ejhieh, Z. Banan, A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet, Desalination, 279 (2011) 146–151.
  33. A. Nezamzadeh-Ejhieh, Z. Banan, Photodegradation of dimethyldisulfide by heterogeneous catalysis using nanoCdS and nanoCdO embedded on the zeolite A synthesized from waste porcelain, Desal Water Treat., 52 (2014) 3328–3337.
  34. A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P, J. Ind. Eng. Chem., 21 (2015) 668–676.
  35. A. Bagheri Ghomi, V. Ashayeri, Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions, Iran J. Catal., 2 (2012) 135– 140.
  36. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Photocatalytic degradation of patent blue V by supported TiO2: Kinetics, mineralization, and reaction pathway, Chem. Eng. Commun., 198 (2011) 1233–1243.
  37. J.A. Grasser, B.K. Stover, D.S. Muggli, Synthesis factors that impact TiO2 nanotube Activity during gas-phase photocatalytic oxidation of methanol, Chem. Eng. Commun., 200 (2013) 337–350.
  38. H.Y. He, P. Chen, Recent Advances in property enhancement of nano TiO2 in photodegradation of organic pollutants, Chem. Eng. Commun., 199 (2012) 1543–1574.
  39. O. Kerkez, I. Boz, Photodegradation of Methylene Blue with Ag2O/TiO2 under visible light: operational parameters, Chem. Eng. Commun., 202 (2015) 534–541.
  40. S.Y. Lee, S.J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19 (2013) 1761–1769.
  41. S.-D. Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B., 51 (1995) 13023–13032.
  42. A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano, Preparation of photocatalytic brookite thin films, Thin Solid Films, 515 (2007) 3527–3529.
  43. Z. Majidnia, A. Idris, Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads, J. Taiwan Inst. Chem. E., 54 (2015) 137–144.
  44. Z. Majidnia, A. Idris, Removal of barium from radioactive aqueous solution by PVA-alginate encapsulated titanium oxide using sunlight and other light types, Rsc Adv., 5 (2015) 63588–63595.
  45. Z. Majidnia, A. Idris, Combination of maghemite and titanium oxide nanoparticles in polyvinyl alcohol-alginate encapsulated beads for cadmium ions removal, Korean J. Chem. Eng., 32 (2015) 1094–1100.
  46. S.D. Jackson, J.S.J. Hargreaves, Metal Oxide Catalysis. 2009, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  47. A. Sclafani, J.M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100 (1996) 13655–13661.
  48. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun., 2 (2000) 207–210.
  49. H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution, J. Ind. Eng. Chem., 26 (2015) 315–321.
  50. A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO-TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol, Desal. Water Treat., 55 (2015) 1096–1104.
  51. B. Khodadadi, Effects of Ag, Nd codoping on structural, optical and photocatalytic properties of TiO2 nanocomposite synthesized via sol-gel method using starch as a green additive, Iran J. Catal., 6 (2016) 305–311.
  52. D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis, Chem. Eng. Sci., 56 (2001) 1561–1570.
  53. H.K. Singh, M. Muneer, Photodegradation of a herbicide derivative, 2,4-dichlorophenoxy acetic acid in aqueous suspensions of titanium dioxide, Res. Chem. Intermed., 30 (2004) 317–329.
  54. H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, Heterogeneous photocatalyzed degradation of uracil and 5-bromouracil in aqueous suspensions of titanium dioxide, J. Hazard. Mater., 142 (2007) 425–430.
  55. W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide- mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today, 124 (2007) 133–148.
  56. R. Enriquez, P. Pichat, Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water, J. Environ. Sci. Heal. A., 41 (2006) 955–966.
  57. M. Qamar, M. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide, J. Hazard. Mater., 120 (2005) 219–227.
  58. M.A. Rahman, M. Muneer, Heterogeneous photocatalytic degradation of picloram, dicamba, and floumeturon in aqueous suspensions of titanium dioxide, J. Environ. Sci. Heal. B., 40 (2005) 247–267.
  59. M.A. Rahman, M. Muneer, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181 (2005) 161–172.
  60. H.K. Singh, M. Muneer, D. Bahnemann, Photocatalysed degradation of a herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide, Photoch. Photobio. Sci., 2 (2003) 151–156.
  61. H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, Heterogeneous photocatalysed degradation of 4-chlorophenoxyacetic acid in aqueous suspensions, J. Hazard. Mater., 142 (2007) 374–380.
  62. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B., 107 (2003) 4545–4549.
  63. M. Muneer, M. Qamar, M. Saquib, D.W. Bahnemann, Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
  64. H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, D.W. Bahnemann, Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid, in aqueous suspensions, J. Mol. Catal. a-Chem., 264 (2007) 66–72.
  65. A.A. Adesina, Industrial exploitation of photocatalysis: progress, perspectives and prospects, Catal. Surv. Asia, 8 (2004) 265–273.
  66. I.J. Ochuma, R.P. Fishwick, J. Wood, J.M. Winterbottom, Optimisation of degradation conditions of 1,8-diazabicyclo[5.4.0] undec-7-ene in water and reaction kinetics analysis using a cocurrent downflow contactor photocatalytic reactor, Appl. Catal. B-Environ., 73 (2007) 259–268.
  67. M.N. Chong, B. Jin, H.Y. Zhu, C.W.K. Chow, C. Saint, Application of H-titanate nanofibers for degradation of Congo Red in an annular slurry photoreactor, Chem. Eng. J., 150 (2009) 49–54.
  68. M.N. Chong, S.M. Lei, B. Jin, C. Saint, C.W.K. Chow, Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titania impregnated kaolinite nano-photocatalyst, Sep. Purif. Technol., 67 (2009) 355–363.
  69. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photoch. Photobio. C., 9 (2008) 1–12.
  70. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115–129.
  71. S.S. China, K. Chiang, A.G. Fane, The stability of polymeric membranes in a TiO2 photocatalysis process, J. Membr. Sci., 275 (2006) 202–211.
  72. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation, Chem. Eng. J., 228 (2013) 631–641.
  73. M. Amiri, A. Nezamzadeh-Ejhieh, Improvement of the photocatalytic activity of cupric oxide by deposition onto a natural clinoptilolite substrate, Mat. Sci. Semicon. Proc., 31 (2015) 501–508.
  74. A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. a-Gen., 388 (2010) 149–159.
  75. A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor, Dyes Pigments, 68 (2006) 53–60.
  76. G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, S. Dukan, The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, Fems. Microbiol. Lett., 258 (2006) 18–24.
  77. Y. Xu, C. Langford, Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity, 133 (2000) 67–71.
  78. X.L. Zhu, C.W. Yuan, Y.C. Bao, J.H. Yang, Y.Z. Wu, Photocatalytic degradation of pesticide pyridaben on TiO2 particles, J. Mol. Catal. a-Chem., 229 (2005) 95–105.
  79. R.W. Matthews, Photooxidation of organic material in aqueous suspensions of titanium-dioxide, Water Res., 20 (1986) 569–578.
  80. S.F. Chen, G.Y. Cao, Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2 center dot SiO2/beads by sunlight, Sol. Energy, 79 (2005) 1–9.
  81. A. Nezamzade f Eriochrome Black T using Ni/P zeolite catalyst, Desalination, 262 (2010) 79–85.
  82. A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite, J. Ind. Eng. Chem., 20 (2014) 1421–1431.
  83. S. Azimi, A. Nezamzadeh-Ejhieh, Enhanced activity of clinoptilolite- supported hybridized PbS-CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution, J. Mol. Catal. a-Chem., 408 (2015) 152–160.
  84. N. Arabpour, A. Nezamzadeh-Ejhieh, Modification of clinoptilolite nano-particles with iron oxide: Increased composite catalytic activity for photodegradation of cotrimaxazole in aqueous suspension, Mat. Sci. Semicon. Proc., 31 (2015) 684–692.
  85. A. Nezamzadeh-Ejhieh, Z. Salimi, Solar photocatalytic degradation of o-phenylenediamine by heterogeneous CuO/X zeolite catalyst, Desalination, 280 (2011) 281–287.
  86. H. Derikvandi, A. Nezamzadeh-Ejhieh, Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles, J. Colloid. Interf. Sci., 490 (2017) 628–641.
  87. N. Ajoudanian, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin, Mat. Sci. Semicon. Proc., 36 (2015) 162–169.
  88. A. Nezamzadeh-Ejhieh, E. Shahriari, Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeolite Y, J. Ind. Eng. Chem., 20 (2014) 2719–2726.
  89. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of Methylene blue and Methyl orange aqueous mixture, Appl. Catal. a-Gen., 477 (2014) 83–92.
  90. S. Jafari, A. Nezamzadeh-Ejhieh, Supporting of coupled silver halides onto clinoptilolite nanoparticles as simple method for increasing their photocatalytic activity in heterogeneous photodegradation of mixture of 4-methoxy aniline and 4-chloro- 3-nitro aniline, J. Colloid. Interf. Sci., 490 (2017) 478–487.
  91. M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles, J. Hazard. Mater., 318 (2016) 291–301.
  92. A. Idris, Z. Majidnia, Evaluation of the Cd removal efficacy from aqueous solutions using titania PVA-alginate beads, Desal. Water Treat., 56 (2015) 266–273.
  93. A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today, 58 (2000) 167–197.
  94. R. Terzian, N. Serpone, Heterogeneous photocatalyzed oxidation of creosote Components - mineralization of xylenols by illuminated TiO2 in oxygenated aqueous-media, J. Photoch. Photobio. A., 89 (1995) 163–175.
  95. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1 (2000) 1–21.
  96. G.C. Glatzmaier, T.A. Milne, C. Tyner, J. Sprung, Innovative solar technologies for treatment of concentrated organic wastes, Sol. Energ. Mater., 24 (1991) 672–673.
  97. C. Karunakaran, S. Senthilvelan, Photooxidation of aniline on alumina with sunlight and artificial UV light, Catal. Commun., 6 (2005) 159–165.
  98. M. Qamar, M. Muneer, D. Bahnemann, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide, J. Environ. Manage., 80 (2006) 99–106.
  99. D. Curco, J. Gimenez, A. Addardak, S. Cervera-March, S. Esplugas, Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants, Catal. Today, 76 (2002) 177–188.
  100. Z. Shams-Ghahfarokhi, A. Nezamzadeh-Ejhieh, As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process, Mat. Sci. Semicon. Proc., 39 (2015) 265–275.
  101. B. Kraeutler, A.J. Bard, Heterogeneous photocatalytic synthesis of methane from acetic acid - new Kolbe reaction pathway, J. Amer. Chem. Soc., 100 (1978) 2239–2240.
  102. S. Tunesi, M.A. Anderson, Photocatalysis of 3,4-Dcb in TiO2 aqueous suspensions - effects of temperature and light-intensity - CIR-FTIR interfacial analysis, Chemosphere, 16 (1987) 1447–1456.
  103. E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts, Appl. Catal. B-Environ., 59 (2005) 81–89.
  104. N.Z. Muradov, A. TRaissi, D. Muzzey, C.R. Painter, M.R. Kemme, Selective photocatalytic destruction of airborne VOCs, Sol. Energy, 56 (1996) 445–453.
  105. E.T. Soares, M.A. Lansarin, C.C. Moro, A study of process variables for the photocatalytic degradation of rhodamine B, Braz. J. Chem. Eng., 24 (2007) 29–36.
  106. Y.W. Ho, S.L. Chou, Thioxopyrimidine in heterocyclic synthesis II: novel synthesis of some triazoles and triazepine derivatives with a pyrimido[3,2:4,5]thieno[2,3-d]pyrimidine skeleton, J. Chem-Ny., (2013).
  107. A.G. Rincon, C. Pulgarin, Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B-Environ., 44 (2003) 263–284.
  108. D.W. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res., 32 (1998) 3223–3234.
  109. J.M. Herrmann, Fundamentals and misconceptions in photocatalysis, J. Photoch. Photobiol. A., 216 (2010) 85–93.
  110. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  111. R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng., 25 (2008) 64–72.
  112. S. Mozia, M. Tomaszewska, A.W. Morawski, Photocatalytic degradation of azo-dye Acid Red 18, Desalination, 185 (2005) 449–456.