1. T. Thompson, M. Sobsey, J. Bartram, Providing clean water, keeping water clean, an integrated approach, Int. J. Environ. Health. Res., 13 (2003) 89–94.
  2. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1 (2006) 2661–2667.
  3. S.D. Faust, O.M. Aly, Adsorption processes for water treatment, first ed., Butterworth, Stoneham MA, 1987.
  4. M. Sanchez-Polo, J. Rivera-Utrilla, Adsorbent-adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons, Environ. Sci. Technol., 36 (2002) 3850–3854.
  5. R. Radhika, T. Ayalatha, S. Acob, R. Rajeev, B.K. George, B.R. Anjali, Removal of perchlorate from drinking water using granular activated carbon modified by acidic functional group: Adsorption kinetics and equilibrium studies, Process Safety Environ. Protect., 109 (2017) 158–171.
  6. C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol., 52 (2007) 403–415.
  7. H. Marsh, F. Rodríguez Reinoso, Activated Carbon, 1st ed., Elsevier, Oxford, 2006.
  8. A.M. Puziy, O.I. Poddubnayaa, A. Martınez-Alonso, F. Suarez- Garcıa, J.M.D. Tascon, Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties, Carbon, 40 (2002) 1493–1505.
  9. M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180 (2010) 552–560.
  10. X. Zhao, S. Lai, H. Liu, L. Gao, Preparation and characterization of activated carbon foam from phenolic resin, J. Environ. Sci., 21 (2009) 121–123.
  11. J. Wang, T.L. Liu, Q.X. Huang, Z.Y. Ma, Y. Chi, J.H. Yan, Production and characterization of high quality activated carbon from oily sludge, Fuel. Process. Technol., 162 (2017) 13–19.
  12. M.A.P. Cechinel, A.A.U. Ulson de Souza, A.A. Ulson de Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone, J. Clean. Prod., 65 (2014) 342–349.
  13. H. Benaddi, T.J. Bandosz, J.A. Jagiello, J.A. Schwarz, J.N. Rouzaud, D. Legras, F. Béguin, Surface functionality and porosity of activated carbons obtained from chemical activation of wood, Carbon, 38 (2000) 669–674.
  14. H. Deng, G. Zhang, X. Xu, G. Tao, J. Dai, Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation, J. Hazard. Mater., 182 (2010) 217–224.
  15. V. Gomez-Serrano, E.M. Cuerda-Correa, M.C. Fernandez-Gonzalez, M.F. Alexandre-Franco, A. Macıas-Garcıa, Preparation of activated carbons from chestnut wood by phosphoric acid-chemical activation, Study of microporosity and fractal dimension, Mater. Lett., 59 (2005) 846–853.
  16. V. Fierro, V. Torne-Fernandez, A. Celzard, Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: Synthesis and textural characterization, Micropor. Mesopor. Mater., 92 (2006) 243–250.
  17. I.A.W. Tan, J.C. Chan, B.H. Hameed, L.L.P. Lim, Adsorption behavior of cadmium ions onto phosphoric acid-impregnated microwave-induced mesoporous activated carbon, J. Water Process. Eng., 14 (2016) 60–70.
  18. M. Molina-Sabio, F. Rodrıguez-Reinoso, Role of chemical activation in the development of carbon porosity, Colloids Surf. A Physicochem. Eng. Asp., 241 (2004) 15–25.
  19. A. Reffas, V. Bernardet, B. David, L. Reinert, M.B. Lehocine, L. Duclaux, Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL, J. Hazard. Mater., 175 (2010) 779–788.
  20. M. Kwiatkowski, D. Kalderis, E. Diamadopoulos, Numerical analysis of the influence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric (V) acid, J. Phys. Chem. Solids, 105 (2017) 81–85.
  21. B. Tiryaki, E. Yagmur, A. Banford, Z. Aktas, Comparison of activated carbon produced from natural biomass and equivalent chemical compositions, J. Anal. Appl. Pyrolysis, 105 (2014) 276–283.
  22. J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons, ACS Sustain. Chem. Eng., 4 (2016) 3750–3756.
  23. C. Rodriguez, C. Thomas Otto, A. Kruse, Influence of the biomass components on the pore formation of activated carbon, Biomass Bioenergy, 97 (2017) 53–64.
  24. M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon, 36 (1998) 1085–1097.
  25. Y. Guo, D.A. Rockstraw, Physical and chemical properties of carbons synthesized from xylan, cellulose and Kraft lignin by H3PO4 activation, Carbon, 44 (2006) 1464–1475.
  26. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production, Renew. Sustain. Energy Rev., 11 (2007) 1966–2005.
  27. J.M. Dias, M.C. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo,Waste materials for activated carbon preparation and its use in aqueous-phase treatment, J. Environ. Manage., 85 (2007) 833–846.
  28. L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri, Adsorption of Pb(II) from aqueous solutions using activated carbon developed from apricot stone, Desalination, 276 (2011) 148–153.
  29. M.H. Marzbali, M. Esmaieli, H. Abolghasemi, M.H. Marzbali, Tetracycline adsorption by H3PO4 activated carbon produced from apricot nut shells: A batch study, Process Safety Environ. Protect., 102 (2016) 700–709.
  30. Ç. Şentorun-Shalaby, M.G. Uçak-Astarlıoglu, L. Artok, Ç. Sarıcı, Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones, Micropor. Mesopor. Mater., 88 (2006) 126–134.
  31. M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D. Richard, A.H. Al-Dujaili, Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013) 155–160.
  32. H. Sütcü, H. Demiral, Production of granular activated carbons from loquat stones by chemical activation, J. Anal. Appl. Pyrolysis, 84 (2009) 47–52.
  33. M. Plaza-Recobert, G. Trautwein, M. Pérez-Cadenas, J. Alcañiz-Monge, Superactivated carbons by CO2 activation of loquat stones, Fuel Process. Technol., 159 (2017) 345–352.
  34. V.V. Do Thi, Matériaux composites fibres naturelles/polymère biodégradable, Ph. D Thesis, University of Grenoble, France, 2011.
  35. M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon, 37 (1999) 1215– 1221.
  36. H.P. Boehm, Surface oxides on carbon and their analysis, a critical assessment, Carbon, 40 (2002) 145–149.
  37. M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L. Duclaux, Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves, Fuel. Process. Tech., 92 (2011) 1203–1212.
  38. K. Kaneko, C. Ishii, Super high surface area determination of microporous solids, Colloids Surf., 67 (1992) 203–212.
  39. J. Jagiello, M. Thommes, Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions, Carbon, 42 (2004) 1227–1232.
  40. J. Jagiello, J.P. Olivier, A simple two dimensional NLDFT model of gas adsorption in finite carbon pores, Application to pore structure analysis, J. Phys. Chem. C., 113 (2009) 19382–19385.
  41. J. Yu, N. Paterson, J. Blamey, M. Millan, Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass, Fuel, 191 (2017) 140–149.
  42. H. Zhou, Y. Long, A. Meng, Q. Li, Y. Zhang, The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves, Thermochim. Acta, 566 (2013) 36–43.
  43. S.J. Park, B.J. Park, S.K. Ryu, Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr (VI) adsorption, Carbon, 37 (1999) 1223–1226.
  44. S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms resulting from intumescence. II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system, Carbon, 33 (1995) 283–294.
  45. E. Sabio, E. Gonzalez, J.F. Gonzalez, C.M. Gonzalez-Garcia, A. Ramiro, J. Ganan, Thermal regeneration of activated carbon saturated with p-nitrophenol, Carbon, 42 (2004) 2285–2293.
  46. M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid, Energy Fuels, 21 (2007) 2942–2949.
  47. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing, Adsorption by powders and porous solids: principles, methodology and applications, second ed., Academic Press, Oxford, 2014.
  48. A.M. Youssef, N.R.E. Radwan, I. Abdel-Gawad, G.A.A. Singer, Textural properties of activated carbons from apricot stones, Colloids Surf. A Physicochem. Eng. Asp., 252 (2005) 143–151.
  49. S. Agarwal, I. Tyagi, V.K. Gupta, N. Ghasemi, M. Shahivand, M. Ghasemi, Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride, J. Mol. Liq., 218 (2016) 208–218.
  50. D. Graham, Characterization of physical adsorption systems III, The separate effects of pore size and surface acidity upon the adsorbent capacities of activated carbons, J. Phys. Chem., 59 (1955) 896–900.
  51. E. Altintig, H. Altundag, M. Tuzen, M. Sari, Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent, Chem. Eng. Res. Design, 122 (2017) 151–163.