1. J. Dong, C. Wen, D. Liu, W. Zhang, J. Li, H. Jiang, et al., Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron, J. Nanopart. Res., 17 (2015) 1–11.
  2. S. Hu, H. Yao, K. Wang, C. Lu, Y. Wu, Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as fenton-like catalyst, Water Air Soil Pollut., 226 (2015) 1–13.
  3. H. Bai, P. He, J. Pan, J. Chen, Y. Chen, F. Dong, et al., Borondoped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene, J. Colloid. Interf. Sci., 497 (2017) 422–428.
  4. J. Bai, Y. Liu, X. Yin, H. Duan, J. Ma, Efficient removal of nitrobenzene by Fenton-like process with Co-Fe layered double hydroxide, Appl. Surf. Sci., 416 (2017) 45–50.
  5. C. Ciou, C. Liang, 1, 3-Dinitrobenzene reductive degradation by alkaline ascorbic acid–Reaction mechanisms, degradation pathways and reagent optimization, Chemosphere, 166 (2017) 482–488.
  6. H. Li, Y.-s. Zhao, R. Zhao, B.-w. Ma, Z.-f. Chen, Y. Su, et al., Characteristics and kinetics of nitrobenzene reduction by sucrose-modified nanoiron, Chem. Res. Chinese U., 29 (2013) 765–770.
  7. S. Jeong, H. Lee, H. Park, K.-J. Jeon, Y.-K. Park, S.-C. Jung, Rapid photocatalytic degradation of nitrobenzene under the simultaneous illumination of UV and microwave radiation fields with a TiO2 ball catalyst, Catal. Today., 307 (2018) 65–72.
  8. D. Gu, N. Shao, Y. Zhu, H. Wu, B. Wang, Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept, J. Hazard. Mater., 321 (2017) 703–710.
  9. W. Jiao, Y. Qin, S. Luo, Z. He, Z. Feng, Y. Liu, Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor, Chem. Eng. J., 321 (2017) 564–571.
  10. C. Ren, Y. Li, J. Li, G. Sheng, L. Hu, X. Zheng, Immobilization of nanoscale zero valent iron on organobentonite for accelerated reduction of nitrobenzene, J. Chem. Technol. Biotechnol., 89 (2014) 1961–1966.
  11. A. Mehrizad, P. Gharbani. Study of 1-chloro-4-nitrobenzene adsorption on carbon nanofibers by experimental design, Int. J. Nano. Dimen., 7 (2016) 77–84.
  12. X. Ling, J. Li, W. Zhu, Y. Zhu, X. Sun, J. Shen, et al., Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene, Chemosphere. 87 (2012) 655–660.
  13. R. Zhang, J. Li, C. Liu, J. Shen, X. Sun, W. Han, et al., Reduction of nitrobenzene using nanoscale zero-valent iron confined in channels of ordered mesoporous silica, Colloids. Surf. A. Physicochem. Eng. Asp., 425 (2013) 108–114.
  14. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  15. X. Peng, X. Liu, Y. Zhou, B. Peng, L. Tang, L. Luo, et al., New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions, RSC Adv., 7 (2017) 8755–8761.
  16. L. Tang, J. Tang, G. Zeng, G. Yang, X. Xie, Y. Zhou, et al., Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect, Appl. Surf Sci., 333 (2015) 220–228.
  17. M. Tong, S. Yuan, H. Long, M. Zheng, L. Wang, J. Chen, Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane, J. Contam. Hydrol., 122 (2011) 16–25.
  18. M. Bhaumik, H.J. Choi, R.I. McCrindle, A. Maity, Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications, J. Colloid. Interf. Sci., 425 (2014) 75–82.
  19. D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sharma, et al., Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr (IV) selenotungstophosphate nanocomposite, Toxicol. Environ. Chem., 97 (2015) 526–537.
  20. G. Sharma, M. Naushad, A. Kumar, S. Devi, M.R. Khan, Lanthanum/cadmium/polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant, Iran Polym. J., 24 (2015) 1003–1013.
  21. G. Sharma, D. Pathania, M. Naushad, Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium (IV) selenotungstophosphate for the separation of toxic metal ions, Ionics, 21 (2015) 1045–1055.
  22. M. Naushad, Z. Al-Othman, M. Islam, Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn (IV) silicate: kinetics, thermodynamic and isotherm studies, Int. J. Environ. Sci. Technol., 10 (2013) 567–578.
  23. M. Bhaumik, C. Noubactep, V.K. Gupta, R. McCrindle, A. Maity, Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions, Chem. Eng. J., 271 (2015) 135–146.
  24. N. Colak, A. Özyilmaz, Polyaniline coating on iron–synthesis and characterization, Polym. Plast. Technol. Eng., 44 (2005) 1547–1558.
  25. X. Yue, Z. Liu, Q. Zhang, X. Li, F. Hao, J. Wei, et al., Oxidative degradation of Rhodamine B in aqueous solution using Fe/PANI nanoparticles in the presence of AQS serving as an electron shuttle, Desal. Water Treat., 57 (2016) 15190–15199.
  26. B.D. Yirsaw, M. Megharaj, Z. Chen, R. Naidu, Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology, Environ. Technol. Innov., 5 (2016) 136–147.
  27. J. Gou, Q. Ma, Y. Cui, X. Deng, H. Zhang, X. Cheng, et al., Visible light photocatalytic removal performance and mechanism of diclofenac degradation by Ag3PO4 sub-microcrystals through response surface methodology, J. Ind. Eng. Chem., 49 (2017) 112–121.
  28. H. Aghdasinia, R. Bagheri, B. Vahid, A. Khataee, Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye, Environ. Technol., (2016) 1–10.
  29. N. Sivarajasekar, K. Balasubramani, N. Mohanraj, J.P. Maran, S. Sivamani, P.A. Koya, et al., Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: Statistical optimization, process design and breakthrough modeling, J. Mol. Liq., 241 (2017) 823–830.
  30. B. Desalegn, M. Megharaj, Z. Chen, R. Naidu, Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology, Environ. Technol. Innov., 5 (2016) 136–147.
  31. W. Guo, F. Hao, X. Yue, Z. Liu, Q. Zhang, X. Li, et al., Rhodamine B removal using polyaniline-supported zero-valent iron powder in the presence of dissolved oxygen, Environ. Prog. Sustain. Energy, 35 (2016) 48–55.
  32. B. Li, J. Zhu, Removal of p-chloronitrobenzene from groundwater: Effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process, Chem. Eng. J., 255 (2014) 225–232.
  33. H. Duan, Y. Liu, X. Yin, J. Bai, J. Qi, Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system, Chem. Eng. J., 283 (2016) 873–879.
  34. J. Dong, C. Wen, D. Liu, W. Zhang, J. Li, H. Jiang, et al., Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron, J. Nanopart. Res., 17 (2015) 1–11.
  35. S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology, Process. Saf. Environ. Prot., 99 (2016) 120–128.
  36. S.H. Piao, M. Bhaumik, A. Maity, H.J. Choi, Polyaniline/Fe composite nanofiber added softmagnetic carbonyl iron microsphere suspension and its magnetorheology, J. Mater. Chem. C., 3 (2015) 1861–1868.
  37. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, et al., Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles, J. Alloys Compd., 731 (2018) 1256–1266.
  38. T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, J. Alloys Compd., 694 (2017) 777–791.
  39. A. Agrawal, P.G. Tratnyek, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30 (1995) 153–160.
  40. J. Dong, Y. Zhao, R. Zhao, R. Zhou, Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron, J. Environ. Sci., 22 (2010) 1741–1747.
  41. P. SivaKumar, D. Prabhakaran, T. Kannadasan, S. Karthikeyan, Optimization studies on electrochemical and biosorption treatment of effluent containing nitro benzene by RSM, Int. J. Biosci., (IJB) 3 (2013) 1–7.
  42. S. Nazari, P. Gharbani, Adsorption of 1-chloro-4-nitrobenzene from aqueous solutions onto single-walled carbon nanotubes, Int. J. Nano Dimens., 3 (2013) 263–269.
  43. H. Keypour, M. Noroozi, A. Rashidi, M. Shariati Rad, Application of response surface methodology for catalytic hydrogenation of nitrobenzene to aniline using ruthenium supported fullerene nanocatalyst, Iran J. Chem. Eng., 34 (2015) 21–32.
  44. W. Yin, J. Wu, P. Li, X. Wang, N. Zhu, P. Wu, et al., Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: the effects of pH, iron dosage, oxygen and common dissolved anions, Chem. Eng. J., 184 (2012) 198–204.
  45. Y. Mu, H.-Q. Yu, J.-C. Zheng, S.-J. Zhang, G.-P. Sheng, Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron, Chemosphere, 54 (2004) 789–794.
  46. X. Li, Y. Zhao, B. Xi, X. Mao, B. Gong, R. Li, et al., Removal of nitrobenzene by immobilized nanoscale zero-valent iron: Effect of clay support and efficiency optimization, Appl. Surf. Sci., 370 (2016) 260–269.
  47. W. Yin, J. Wu, P. Li, G. Lin, X. Wang, B. Zhu, et al., Reductive transformation of pentachloronitrobenzene by zero-valent iron and mixed anaerobic culture, Chem. Eng. J., 210 (2012) 309–315.
  48. M. Vaez, A. Zarringhalam Moghaddam, S. Alijani, Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles, Ind. Eng. Chem. Res., 51 (2012) 4199–4207.
  49. C. Liang, Y.-T. Lin, J.-W. Shiu, Reduction of nitrobenzene with alkaline ascorbic acid: kinetics and pathways, J. Hazard Mater., 302 (2016) 137–143.
  50. M. Padervand, A. Rahmani, S. Rahimnejad, M.R. Gholami, Highly efficient nitrobenzene photoreduction over the amino acid-modified CdS-TiO2 nanostructures under visible light, Nanochem. Res., 2 (2017) 109–119.
  51. S. Zhang, L. Li, Y. Liu, Q. Zhang, TiO2-SA-Arg nanoparticles stabilized pickering emulsion for photocatalytic degradation of nitrobenzene in a rotating annular reactor, Chin. J. Chem. Eng., (2016).
  52. R. Rezaei Kalantary, A. Azari, A. Esrafili, K. Yaghmaeian, M. Moradi, K. Sharafi, The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study, Desal. Water Treat., 57 (2016) 28460–28473.
  53. L. Ai, Y. Zhou, J. Jiang, Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance, Desalination, 266 (2011) 72–77.
  54. H. Lee, B.-H. Kim, Y.-K. Park, S.-J. Kim, S.-C. Jung, Application of recycled zero-valent iron nanoparticle to the treatment of wastewater containing nitrobenzene, J. Nanomate., 16 (2015) 363–375.