References
  -  J. Dong, C. Wen, D. Liu, W. Zhang, J. Li, H. Jiang, et al., Study
    on degradation of nitrobenzene in groundwater using emulsified
    nano-zero-valent iron, J. Nanopart. Res., 17 (2015) 1–11. 
-  S. Hu, H. Yao, K. Wang, C. Lu, Y. Wu, Intensify removal of
    nitrobenzene from aqueous solution using nano-zero valent
    iron/granular activated carbon composite as fenton-like catalyst,
    Water Air Soil Pollut., 226 (2015) 1–13. 
-  H. Bai, P. He, J. Pan, J. Chen, Y. Chen, F. Dong, et al., Borondoped
    diamond electrode: Preparation, characterization and
    application for electrocatalytic degradation of m-dinitrobenzene,
    J. Colloid. Interf. Sci., 497 (2017) 422–428. 
-  J. Bai, Y. Liu, X. Yin, H. Duan, J. Ma, Efficient removal of nitrobenzene
    by Fenton-like process with Co-Fe layered double
    hydroxide, Appl. Surf. Sci., 416 (2017) 45–50. 
-  C. Ciou, C. Liang, 1, 3-Dinitrobenzene reductive degradation
    by alkaline ascorbic acid–Reaction mechanisms, degradation
    pathways and reagent optimization, Chemosphere, 166 (2017)
    482–488. 
-  H. Li, Y.-s. Zhao, R. Zhao, B.-w. Ma, Z.-f. Chen, Y. Su, et al.,
    Characteristics and kinetics of nitrobenzene reduction by
    sucrose-modified nanoiron, Chem. Res. Chinese U., 29 (2013)
    765–770. 
-  S. Jeong, H. Lee, H. Park, K.-J. Jeon, Y.-K. Park, S.-C. Jung, Rapid
    photocatalytic degradation of nitrobenzene under the simultaneous
    illumination of UV and microwave radiation fields with
    a TiO2 ball catalyst, Catal. Today., 307 (2018) 65–72. 
-  D. Gu, N. Shao, Y. Zhu, H. Wu, B. Wang, Solar-driven thermo-
    and electrochemical degradation of nitrobenzene in
    wastewater: Adaptation and adoption of solar STEP concept,
    J. Hazard. Mater., 321 (2017) 703–710. 
-  W. Jiao, Y. Qin, S. Luo, Z. He, Z. Feng, Y. Liu, Simultaneous
    formation of nanoscale zero-valent iron and degradation of
    nitrobenzene in wastewater in an impinging stream-rotating
    packed bed reactor, Chem. Eng. J., 321 (2017) 564–571. 
-  C. Ren, Y. Li, J. Li, G. Sheng, L. Hu, X. Zheng, Immobilization of
    nanoscale zero valent iron on organobentonite for accelerated
    reduction of nitrobenzene, J. Chem. Technol. Biotechnol., 89
    (2014) 1961–1966. 
-  A. Mehrizad, P. Gharbani. Study of 1-chloro-4-nitrobenzene
    adsorption on carbon nanofibers by experimental design, Int.
    J. Nano. Dimen., 7 (2016) 77–84. 
-  X. Ling, J. Li, W. Zhu, Y. Zhu, X. Sun, J. Shen, et al., Synthesis
    of nanoscale zero-valent iron/ordered mesoporous carbon for
    adsorption and synergistic reduction of nitrobenzene, Chemosphere.
    87 (2012) 655–660. 
-  R. Zhang, J. Li, C. Liu, J. Shen, X. Sun, W. Han, et al., Reduction
    of nitrobenzene using nanoscale zero-valent iron confined in
    channels of ordered mesoporous silica, Colloids. Surf. A. Physicochem.
    Eng. Asp., 425 (2013) 108–114. 
-  M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M.
    Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon
    as efficient adsorbent for the removal of highly toxic metal
    ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360. 
-  X. Peng, X. Liu, Y. Zhou, B. Peng, L. Tang, L. Luo, et al., New
    insights into the activity of a biochar supported nanoscale
    zerovalent iron composite and nanoscale zero valent iron
    under anaerobic or aerobic conditions, RSC Adv., 7 (2017)
    8755–8761. 
-  L. Tang, J. Tang, G. Zeng, G. Yang, X. Xie, Y. Zhou, et al.,
    Rapid reductive degradation of aqueous p-nitrophenol using
    nanoscale zero-valent iron particles immobilized on mesoporous
    silica with enhanced antioxidation effect, Appl. Surf
    Sci., 333 (2015) 220–228. 
-  M. Tong, S. Yuan, H. Long, M. Zheng, L. Wang, J. Chen, Reduction
    of nitrobenzene in groundwater by iron nanoparticles
    immobilized in PEG/nylon membrane, J. Contam. Hydrol., 122
    (2011) 16–25. 
-  M. Bhaumik, H.J. Choi, R.I. McCrindle, A. Maity, Composite
    nanofibers prepared from metallic iron nanoparticles and
    polyaniline: High performance for water treatment applications,
    J. Colloid. Interf. Sci., 425 (2014) 75–82. 
-  D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A.
    Sharma, et al., Combined sorptional–photocatalytic remediation
    of dyes by polyaniline Zr (IV) selenotungstophosphate
    nanocomposite, Toxicol. Environ. Chem., 97 (2015) 526–537. 
-  G. Sharma, M. Naushad, A. Kumar, S. Devi, M.R. Khan, Lanthanum/cadmium/polyaniline bimetallic nanocomposite for
    the photodegradation of organic pollutant, Iran Polym. J., 24
  (2015) 1003–1013. 
-  G. Sharma, D. Pathania, M. Naushad, Preparation, characterization,
    and ion exchange behavior of nanocomposite polyaniline
    zirconium (IV) selenotungstophosphate for the separation
    of toxic metal ions, Ionics, 21 (2015) 1045–1055. 
-  M. Naushad, Z. Al-Othman, M. Islam, Adsorption of cadmium
    ion using a new composite cation-exchanger polyaniline Sn
    (IV) silicate: kinetics, thermodynamic and isotherm studies,
    Int. J. Environ. Sci. Technol., 10 (2013) 567–578. 
-  M. Bhaumik, C. Noubactep, V.K. Gupta, R. McCrindle, A.
	  Maity, Polyaniline/Fe0 composite nanofibers: an excellent
    adsorbent for the removal of arsenic from aqueous solutions,
  Chem. Eng. J., 271 (2015) 135–146. 
-  N. Colak, A. Özyilmaz, Polyaniline coating on iron–synthesis
    and characterization, Polym. Plast. Technol. Eng., 44 (2005)
    1547–1558. 
-  X. Yue, Z. Liu, Q. Zhang, X. Li, F. Hao, J. Wei, et al., Oxidative
    degradation of Rhodamine B in aqueous solution using Fe/PANI nanoparticles in the presence of AQS serving as an electron
  shuttle, Desal. Water Treat., 57 (2016) 15190–15199. 
-  B.D. Yirsaw, M. Megharaj, Z. Chen, R. Naidu, Reduction of
    hexavalent chromium by green synthesized nano zero valent
    iron and process optimization using response surface methodology,
    Environ. Technol. Innov., 5 (2016) 136–147. 
-  J. Gou, Q. Ma, Y. Cui, X. Deng, H. Zhang, X. Cheng, et al.,
    Visible light photocatalytic removal performance and mechanism
	  of diclofenac degradation by Ag3PO4 sub-microcrystals
    through response surface methodology, J. Ind. Eng. Chem., 49
  (2017) 112–121. 
-  H. Aghdasinia, R. Bagheri, B. Vahid, A. Khataee, Central
    composite design optimization of pilot plant fluidized-bed
    heterogeneous Fenton process for degradation of an azo dye,
    Environ. Technol., (2016) 1–10. 
-  N. Sivarajasekar, K. Balasubramani, N. Mohanraj, J.P. Maran,
    S. Sivamani, P.A. Koya, et al., Fixed-bed adsorption of atrazine
    onto microwave irradiated Aegle marmelos Correa fruit shell:
    Statistical optimization, process design and breakthrough
    modeling, J. Mol. Liq., 241 (2017) 823–830. 
-  B. Desalegn, M. Megharaj, Z. Chen, R. Naidu, Reduction of
    hexavalent chromium by green synthesized nano zero valent
    iron and process optimization using response surface methodology,
    Environ. Technol. Innov., 5 (2016) 136–147. 
-  W. Guo, F. Hao, X. Yue, Z. Liu, Q. Zhang, X. Li, et al., Rhodamine
    B removal using polyaniline-supported zero-valent iron powder
    in the presence of dissolved oxygen, Environ. Prog. Sustain.
    Energy, 35 (2016) 48–55. 
-  B. Li, J. Zhu, Removal of p-chloronitrobenzene from groundwater:
    Effectiveness and degradation mechanism of a heterogeneous
    nanoparticulate zero-valent iron (NZVI)-induced
    Fenton process, Chem. Eng. J., 255 (2014) 225–232. 
-  H. Duan, Y. Liu, X. Yin, J. Bai, J. Qi, Degradation of nitrobenzene
	  by Fenton-like reaction in a H2O2/schwertmannite system,
    Chem. Eng. J., 283 (2016) 873–879. 
-  J. Dong, C. Wen, D. Liu, W. Zhang, J. Li, H. Jiang, et al., Study
    on degradation of nitrobenzene in groundwater using emulsified
    nano-zero-valent iron, J. Nanopart. Res., 17 (2015) 1–11. 
-  S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol
    degradation over copper-doped titanium dioxide photocatalyst
    using response surface methodology, Process. Saf.
    Environ. Prot., 99 (2016) 120–128. 
-  S.H. Piao, M. Bhaumik, A. Maity, H.J. Choi, Polyaniline/Fe
    composite nanofiber added softmagnetic carbonyl iron microsphere
    suspension and its magnetorheology, J. Mater. Chem.
    C., 3 (2015) 1861–1868. 
-  T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M.
    Pacia, W. Macyk, et al., Effect of cobalt substitution on structural,
    elastic, magnetic and optical properties of zinc ferrite
    nanoparticles, J. Alloys Compd., 731 (2018) 1256–1266. 
-  T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak,
    Structural characterization and antistructure modeling
    of cobalt-substituted zinc ferrites, J. Alloys Compd., 694 (2017)
    777–791. 
-  A. Agrawal, P.G. Tratnyek, Reduction of nitro aromatic compounds
    by zero-valent iron metal, Environ. Sci. Technol., 30
    (1995) 153–160. 
-  J. Dong, Y. Zhao, R. Zhao, R. Zhou, Effects of pH and particle
    size on kinetics of nitrobenzene reduction by zero-valent iron,
    J. Environ. Sci., 22 (2010) 1741–1747. 
-  P. SivaKumar, D. Prabhakaran, T. Kannadasan, S. Karthikeyan,
    Optimization studies on electrochemical and biosorption
    treatment of effluent containing nitro benzene by RSM, Int. J.
    Biosci., (IJB) 3 (2013) 1–7. 
-  S. Nazari, P. Gharbani, Adsorption of 1-chloro-4-nitrobenzene
    from aqueous solutions onto single-walled carbon nanotubes,
    Int. J. Nano Dimens., 3 (2013) 263–269. 
-  H. Keypour, M. Noroozi, A. Rashidi, M. Shariati Rad, Application
    of response surface methodology for catalytic hydrogenation
    of nitrobenzene to aniline using ruthenium supported
    fullerene nanocatalyst, Iran J. Chem. Eng., 34 (2015) 21–32. 
-  W. Yin, J. Wu, P. Li, X. Wang, N. Zhu, P. Wu, et al., Experimental
    study of zero-valent iron induced nitrobenzene reduction in
    groundwater: the effects of pH, iron dosage, oxygen and common
    dissolved anions, Chem. Eng. J., 184 (2012) 198–204. 
-  Y. Mu, H.-Q. Yu, J.-C. Zheng, S.-J. Zhang, G.-P. Sheng, Reductive
    degradation of nitrobenzene in aqueous solution by
    zero-valent iron, Chemosphere, 54 (2004) 789–794. 
-  X. Li, Y. Zhao, B. Xi, X. Mao, B. Gong, R. Li, et al., Removal
    of nitrobenzene by immobilized nanoscale zero-valent iron:
    Effect of clay support and efficiency optimization, Appl. Surf.
    Sci., 370 (2016) 260–269. 
-  W. Yin, J. Wu, P. Li, G. Lin, X. Wang, B. Zhu, et al., Reductive
    transformation of pentachloronitrobenzene by zero-valent
    iron and mixed anaerobic culture, Chem. Eng. J., 210 (2012)
    309–315. 
-  M. Vaez, A. Zarringhalam Moghaddam, S. Alijani, Optimization
    and modeling of photocatalytic degradation of azo dye
    using a response surface methodology (RSM) based on the
    central composite design with immobilized titania nanoparticles,
    Ind. Eng. Chem. Res., 51 (2012) 4199–4207. 
-  C. Liang, Y.-T. Lin, J.-W. Shiu, Reduction of nitrobenzene with
    alkaline ascorbic acid: kinetics and pathways, J. Hazard Mater.,
    302 (2016) 137–143. 
-  M. Padervand, A. Rahmani, S. Rahimnejad, M.R. Gholami,
    Highly efficient nitrobenzene photoreduction over the amino
	  acid-modified CdS-TiO2 nanostructures under visible light,
    Nanochem. Res., 2 (2017) 109–119. 
-  S. Zhang, L. Li, Y. Liu, Q. Zhang, TiO2-SA-Arg nanoparticles
    stabilized pickering emulsion for photocatalytic degradation
    of nitrobenzene in a rotating annular reactor, Chin. J. Chem.
    Eng., (2016). 
-  R. Rezaei Kalantary, A. Azari, A. Esrafili, K. Yaghmaeian, M.
    Moradi, K. Sharafi, The survey of Malathion removal using
    magnetic graphene oxide nanocomposite as a novel adsorbent:
    thermodynamics, isotherms, and kinetic study, Desal. Water
    Treat., 57 (2016) 28460–28473. 
-  L. Ai, Y. Zhou, J. Jiang, Removal of methylene blue from aqueous
    solution by montmorillonite/CoFe2O4 composite with
    magnetic separation performance, Desalination, 266 (2011)
    72–77. 
-  H. Lee, B.-H. Kim, Y.-K. Park, S.-J. Kim, S.-C. Jung, Application
    of recycled zero-valent iron nanoparticle to the treatment of
    wastewater containing nitrobenzene, J. Nanomate., 16 (2015)
    363–375.